如圖,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分線,AD是高.
(1)求∠BAE的度數(shù);
(2)求∠EAD的度數(shù).
∠BAE為50°,∠EAD為10°。
【解析】
試題分析:(1)根據(jù)△ABC的內(nèi)角和定理求得∠BAC=100°;然后由角平分線的性質(zhì)、△ABE的內(nèi)角和定理來求∠BAE的度數(shù);
(2)由三角形內(nèi)角和定理可求得∠BAC的度數(shù),在Rt△ADC中,可求得∠DAC的度數(shù),AE是角平分線,有∠EAC=
∠BAC,故∠EAD=∠EAC-∠DAC.
解:(1)∵在△ABC中,∠B=30°,∠C=50°,
∴∠BAC=180°-∠B-∠C=100°;
又∵AE是∠BAC的平分線,
∴∠BAE=∠BAC=50°;
(2)∵AD是邊BC上的高,
∴∠ADC=90°,
∴在△ADC中,∠C=50°,∠C+∠DAC=90°,
∴∠DAC=40°,
由(1)知,∠BAE=∠CAE=50°,
∴∠DAE=∠EAC-∠DAC=50°-40°=10°,即∠EAD=10°
考點(diǎn):三角形內(nèi)角和定理、三角形的角平分線、中線和高
點(diǎn)評:本題考查了三角形內(nèi)角和定理、三角形的角平分線、中線和高.解題時(shí),還借用了直角三角形的兩個(gè)銳角互余的性質(zhì)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com