【題目】在探索三角形全等的條件時(shí),老師給出了定長線段,且長度為的邊所對的角為 小明和小亮按照所給條件分別畫出了圖1中的三角形,他們把兩個(gè)三角形重合在一起(如圖2),其中發(fā)現(xiàn)它們不全等,但他們對該圖形產(chǎn)生了濃厚興趣,并進(jìn)行了進(jìn)一步的探究:
(1)當(dāng)時(shí)(如圖2),小明測得,請根據(jù)小明的測量結(jié)果,求的大;
(2)當(dāng)時(shí),將沿翻折,得到(如圖3),小明和小亮發(fā)現(xiàn)的大小與角度有關(guān),請找出它們的關(guān)系,并說明理由;
(3)如圖4,在(2)問的基礎(chǔ)上,過點(diǎn)作的垂線,垂足為點(diǎn),延長到點(diǎn),使得,連接,請判斷的形狀,并說明理由.
【答案】(1);(2);理由見解析;(3)是等腰三角形且BA=BF,理由見解析.
【解析】
(1)先根據(jù)三角形的內(nèi)角和得∠C=70°,由等腰三角形的性質(zhì)得∠BDC=70°,從而得∠CBD的度數(shù),可得結(jié)論;
(2)設(shè)∠BDC=∠C=α,根據(jù)三角形的內(nèi)角和與三角形外角的性質(zhì)分別表示∠ABD和∠DBC,相加可得結(jié)論;
(3)作垂線BT,根據(jù)角平分線的性質(zhì)得:BE=BT,證明Rt△ABE≌Rt△ABT(HL),得AE=AT,證明BE是AF的垂直平分線,可得結(jié)論.
(1)如圖2,△ABC中,∠A=n°=45°,∠ABC=65°,
∴∠C=180°-45°-65°=70°,
∵BD=BC,
∴∠BDC=∠C=70°,
∴∠DBC=180°-2×70°=40°,
∴∠ABD=65°-40°=25°;
(2)如圖3,∠D'BC=180°-2n°,理由是:
設(shè)∠BDC=∠C=α,
∴∠DBC=180°-2α,
△ADB中,∠BDC=∠DAB+∠ABD,
即α=n°+∠ABD,
∴∠ABD=α-n°,
由翻折得:∠ABD'=∠ABD=α-n°,
∴∠D'BC=∠D'BD+∠DBC=2∠ABD+∠DBC=2(α-n°)+(180°-2α)=180°-2n°;
(3)△ABF是等腰三角形,且BF=AB,理由是:
如圖4,過B作BT⊥AC于T,
由折疊得:∠D'BA=∠DAB,
∵BE⊥AF,
∴BE=BT,
在Rt△ABE和Rt△ABT中,
∵ ,
∴Rt△ABE≌Rt△ABT(HL),
∴AE=AT,
∵AD=AD',
∴DT=D'E=TC,
∴(AD+AC)=AT,
∵EF= (AD+AC),
∴AT=EF=AE,
∵BE⊥AF,即BE是AF的垂直平分線,
∴BF=AB,
∴△ABF是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,﹣3),點(diǎn)B(﹣1,﹣3),點(diǎn)C(﹣1,﹣1).
(1)畫出△ABC;
(2)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1點(diǎn)的坐標(biāo): ;
(3)以O為位似中心,在第一象限內(nèi)把△ABC擴(kuò)大到原來的兩倍,得到△A2B2C2,并寫出A2點(diǎn)的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+5x+n與x軸交于點(diǎn)A(1,0)和點(diǎn)C,與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)P是y軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.
(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;
(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),△AMN是否還是等邊三角形?若是請給出證明,
(3)在(2)的條件下,求出當(dāng)AB=2AD時(shí),△ADE與△ABC及△AMN的面積之比S△ADE∶S△ABC∶ S△AMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段EF,BE,FD之間的數(shù)量關(guān)系.
小明同學(xué)探究的方法是:延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,
他的結(jié)論是 (直接寫結(jié)論,不需證明);
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的二分之一,上述結(jié)論是否仍然成立,并說明理由.
(3)如圖3,四邊形ABCD是邊長為5的正方形,∠EBF=45°,直接寫出三角形DEF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,且點(diǎn)C恰好成為AD的中點(diǎn).
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延長線于點(diǎn)D.
(1)若∠B=30°,∠ACB=100°,求∠EAD的度數(shù);
(2)若∠B=α,∠ACB=β,試用含α、β的式子表示∠EAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù):
﹣2,4,﹣8,16,﹣32,64,…; ①
﹣1,2,﹣4,8,﹣16,32,…; ②
0,6,﹣6,18,﹣30,66,…;③
(1)第①行數(shù)中的第n個(gè)數(shù)為 (用含n的式子表示)
(2)取每行數(shù)的第n個(gè)數(shù),這三個(gè)數(shù)的和能否等于﹣318?如果能,求出n的值;如果不能,請說明理由.
(3)如圖,用一個(gè)矩形方框框住六個(gè)數(shù),左右移動(dòng)方框,若方框中的六個(gè)數(shù)之和為﹣156,求方框中左上角的數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com