如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過點(diǎn)M作MN∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說明理由.
(1) .(2)是,理由見解析;(3)(,).(4)當(dāng)時(shí),S取最大值是.此時(shí),點(diǎn)M的坐標(biāo)為(0,).

試題分析:(1)根據(jù)拋物線y=x2+bx+c經(jīng)過點(diǎn)B(0,4),以及頂點(diǎn)在直線x=上,得出b,c即可;
(2)根據(jù)菱形的性質(zhì)得出C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0),利用圖象上點(diǎn)的性質(zhì)得出x=5或2時(shí),y的值即可.
(3)首先設(shè)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,求出解析式,當(dāng)x=時(shí),求出y即可;
(4)利用MN∥BD,得出△OMN∽△OBD,進(jìn)而得出,得到ON=t,進(jìn)而表示出△PMN的面積,利用二次函數(shù)最值求出即可.
試題解析:(1)∵拋物線y=x2+bx+c經(jīng)過點(diǎn)B(0,4),∴c=4.
∵頂點(diǎn)在直線x=上,∴,解得.
∴所求函數(shù)關(guān)系式為.
(2)C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0),
當(dāng)x=5時(shí),;
當(dāng)x=2時(shí),.
∴點(diǎn)C和點(diǎn)D都在所求拋物線上.
(3)設(shè)CD與對(duì)稱軸交于點(diǎn)P,則P為所求的點(diǎn),
設(shè)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,
,解得,.∴直線CD對(duì)應(yīng)的函數(shù)關(guān)系式為
當(dāng)x=時(shí),.∴P(,).
(4) (0<t<4).

∴當(dāng)時(shí),S取最大值是.此時(shí),點(diǎn)M的坐標(biāo)為(0,).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-2(m≠0)與y軸交于點(diǎn)A,其對(duì)稱軸與x軸交于點(diǎn)B.
(1)求點(diǎn)A,B的坐標(biāo);
(2)設(shè)直線l與直線AB關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線l的解析式;
(3)若該拋物線在-2<x<-1這一段位于直線l的上方,并且在2<x<3這一段位于直線AB的下方,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:矩形ABCD中,M為BC邊上一點(diǎn), AB=BM=10,MC=14,如圖1,正方形EFGH的頂點(diǎn)E和點(diǎn)B重合,點(diǎn)F、G、H分別在邊AB、AM、BC上.如圖2,P為對(duì)角線AC上一動(dòng)點(diǎn),正方形EFGH從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿BC向點(diǎn)C勻速移動(dòng);同時(shí),點(diǎn)P從C點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿CA向點(diǎn)A勻速移動(dòng).當(dāng)點(diǎn)F到達(dá)線段AC上時(shí),正方形EFGH和點(diǎn)P同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:
(1)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)F落在線段AM上和點(diǎn)G落在線段AC上時(shí),分別求出對(duì)應(yīng)t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)正方形重疊部分面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在點(diǎn)P,使是以DG為腰的等腰三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線
(1)求A點(diǎn)的坐標(biāo)及該拋物線的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請(qǐng)問在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)Q,使得以點(diǎn)A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2 + bx + c 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱軸為直線x=1,已知:A(-1,0)、C(0,-3)。
(1)求拋物線y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面積比;
(3)在對(duì)稱軸上是否存在一個(gè)P點(diǎn),使△PAC的周長(zhǎng)最小。若存在,請(qǐng)你求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(,0)和(,0)兩點(diǎn).
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫出當(dāng)<x<1時(shí),y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個(gè)單位后,與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)(b>0)與反比例函數(shù)在同一坐標(biāo)系中的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).
(1)求b的值;
(2)判斷關(guān)于x的一元二次方程2x2+bx+1=0是否有實(shí)數(shù)根,若有,求出它的實(shí)數(shù)根;若沒有,請(qǐng)說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個(gè)單位,使平移后的圖象與x軸無交點(diǎn),求k的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.”請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程的兩根,且a < b, 則a、b、m、n 的大小關(guān)系是(   ) 
A.m < a < b< nB.a(chǎn) < m < n < bC.a(chǎn) < m < b< nD.m < a < n < b

查看答案和解析>>

同步練習(xí)冊(cè)答案