【題目】如圖,點(diǎn)A1、A3、A5在反比例函數(shù)y=x0)的圖象上,點(diǎn)A2、A4A6……在反比例函數(shù)y=-x0)的圖象上,∠OA1A2=A1A2A3=A2A3A4=…=α=60°,且OA1=2,則Ann為正整數(shù))的縱坐標(biāo)為________________________________.(用含n的式子表示)

【答案】(-1)n1(-)

【解析】

先證明△OA1E是等邊三角形,求出A1的坐標(biāo),作高線A1D1,再證明△A2EF是等邊三角形,作高線A2D2,設(shè)A2x,),根據(jù)OD2=2+=x,解方程可得等邊三角形的邊長(zhǎng)和A2的縱坐標(biāo),同理依次得出結(jié)論,并總結(jié)規(guī)律:發(fā)現(xiàn)點(diǎn)A1、A3A5…在x軸的上方,縱坐標(biāo)為正數(shù),點(diǎn)A2、A4、A6……在x軸的下方,縱坐標(biāo)為負(fù)數(shù),可以利用(-1n+1來(lái)解決這個(gè)問(wèn)題.

過(guò)A1軸于D1

,

△OA1E是等邊三角形

過(guò)A2軸于D2

∴△A2EF是等邊三角形

設(shè),則

中,

解得(舍去),

經(jīng)檢驗(yàn)是方程的根

A2的縱坐標(biāo)為

過(guò)A3軸于D3

同理得是等邊三角形

設(shè),則

中,

解得(舍),

經(jīng)檢驗(yàn)是方程的根

,

A3的縱坐標(biāo)為

……

n為正整數(shù))的縱坐標(biāo)為

故答案為:(-1)n1(-)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖像如圖所示,對(duì)稱軸為直線,則下列結(jié)論正確的有(

;②方程的兩個(gè)根是,;

;④當(dāng)時(shí),的增大而減。

A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐵嶺市某商貿(mào)公司以每千克40元的價(jià)格購(gòu)進(jìn)一種干果,計(jì)劃以每千克60元的價(jià)格銷售,為了讓顧客得到更大的實(shí)惠,現(xiàn)決定降價(jià)銷售,已知這種干果銷售量y(千克)與每千克降價(jià)x()(0x20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:

(1)yx之間的函數(shù)關(guān)系式;

(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價(jià)多少元?

(3)該干果每千克降價(jià)多少元時(shí),商貿(mào)公司獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接

求拋物線的解析式;

軸下方拋物線上的一點(diǎn),且,請(qǐng)通過(guò)計(jì)算或推理判斷的位置關(guān)系:

軸左側(cè)的拋物線上是否存在與點(diǎn)不重合的點(diǎn),使等于中的某個(gè)銳角? 若存在,請(qǐng)求出的值:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),EBC中點(diǎn),OFDE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)PAO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).

1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);

2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tanEOF時(shí),求點(diǎn)Q2的坐標(biāo);

3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.

①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Qs,APt,求s關(guān)于t的函數(shù)表達(dá)式.

②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,BC=9, CA=12,∠ABC的平分線BDAC與點(diǎn)D, DE⊥DBAB于點(diǎn)E

1)設(shè)⊙O△BDE的外接圓,求證:AC⊙O的切線;

2)設(shè)⊙OBC于點(diǎn)F,連結(jié)EF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c0的兩個(gè)非零實(shí)數(shù)根分別為x1,x2,則x1+x2=﹣,x1x2.

解決下列問(wèn)題:已知關(guān)于x的一元二次方程(x+n)26x有兩個(gè)非零不等實(shí)數(shù)根x1,x2,設(shè)m,

()當(dāng)n1時(shí),求m的值;

()是否存在這樣的n值,使m的值等于?若存在,求出所有滿足條件的n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸交于點(diǎn)C03),其對(duì)稱軸與軸交于點(diǎn)A2,0).

1)求拋物線的解析式;

2)將拋物線適當(dāng)平移,使平移后的拋物線的頂點(diǎn)為D0,).已知點(diǎn)B2,2),若拋物線△OAB的邊界總有兩個(gè)公共點(diǎn),請(qǐng)結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一種進(jìn)價(jià)為每件10元的日用商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件)與銷售單價(jià)(元)滿足,設(shè)銷售這種商品每天的利潤(rùn)為(元).

1)求之間的函數(shù)關(guān)系式;

2)在保證銷售量盡可能大的前提下,該商場(chǎng)每天還想獲得2000元的利潤(rùn),應(yīng)將銷售單價(jià)定為多少元?

3)當(dāng)每天銷售量不少于50件,且銷售單價(jià)至少為32元時(shí),該商場(chǎng)每天獲得的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案