【題目】二次函數(shù)y1ax2bxca,bc為常數(shù))的圖象如圖所示,若y1y22,則下列關(guān)于函數(shù)y2的圖象與性質(zhì)描述正確的是:( )

A.函數(shù)y2的圖象開口向上

B.函數(shù)y2的圖象與x軸沒有公共點

C.x2時,y2x的增大而減小

D.x1時,函數(shù)y2的值小于0

【答案】C

【解析】

由圖象開口方向及與y軸的交點可知a>0,c>2,由y1y22可得y2=-ax2-bx-c+2,由-a<0可對A進行判斷;根據(jù)頂點坐標方程可得出y2的最大值,由y2解析式可得y2y軸的交點可對B進行判斷;根據(jù)對稱軸可對C進行判斷;把x=1代入y1y2解析式,根據(jù)y1圖象可對D進行判斷.綜上即可得答案.

y1的圖象開口向上,與y軸交點在(0,2)上方,

a>0,c>2,

y1y22,

y2=-y1+2=-ax2-bx-c+2,

-a<0,

∴函數(shù)y2的圖像開口向下,故A錯誤,

y2的最大值為=-+2

<1,

-+2>1

∴函數(shù)y2的圖像與x軸有兩個交點,故B錯誤,

∵對稱軸直線在12之間,圖象開口向下,

x>2時,y2x的增大而減小,故C正確,

x=1時,y1=a+b+c<2,

-a+b+c>-2

x=1時,y2=-a-b-c+2=-(a+b+c)+2>0,故D錯誤,

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某排球隊6名場上隊員的身高(單位:cm)是:180,184188,190,192,194.現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員,與換人前相比,場上隊員的身高( )

A. 平均數(shù)變小,中位數(shù)變小

B. 平均數(shù)變小,中位數(shù)變大

C. 平均數(shù)變大,中位數(shù)變小

D. 平均數(shù)變大,中位數(shù)變大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春平中學要為學?萍蓟顒有〗M提供實驗器材,計劃購買A型、B型兩種型號的放大鏡.若購買8A型放大鏡和5B型放大鏡需用220元;若購買4A型放大鏡和6B型放大鏡需用152元.

(1)求每個A型放大鏡和每個B型放大鏡各多少元;

(2)春平中學決定購買A型放大鏡和B型放大鏡共75個,總費用不超過1180元,那么最多可以購買多少個A型放大鏡?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為124AB的長度是13米,MN是二樓樓頂,MN∥PQ,CMN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈07tan42°≈09

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點E,點FM分別是AB,BC的中點,BN平分∠ABEAM于點N,ABACBD,連接MF,NF

(1)判斷△BMN的形狀,并證明你的結(jié)論;

(2)判斷△MFN△BDC之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是菱形ABCD對角線BD上的一點,且OCOD,連接OA

1)求證:∠AOC2ABC;

2)求證:CD2OD·BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于點Aa,3),且與x軸相交于點B

1)求該反比例函數(shù)的表達式;(2)若Py軸上的點,且△AOP的面積是△AOB的面積的,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文化源遠流長,文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為四大古典名著某中學為了解學生對四大名著的閱讀情況,就四大古典名著你讀完了幾部的問題在全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計圖.

請根據(jù)以上信息,解決下列問題

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是____部,中位數(shù)是_____部;

(2)扇形統(tǒng)計圖中“4所在扇形的圓心角為_____度;

(3)請將條形統(tǒng)計圖補充完整;

(4)沒有讀過四大古典名著的兩名學生準備從中各自隨機選擇一部來閱讀,求他們恰好選中同一名著的概率.

查看答案和解析>>

同步練習冊答案