對于函數(shù)y=-x2+2x-2,使得y隨x的增大而增大的x的取值范圍是( 。
分析:先運用配方法將拋物線寫成頂點式y(tǒng)=-(x-1)2-1,由于a=-1<0,拋物線開口向下,對稱軸為直線x=1,根據(jù)拋物線的性質可知當x≤1時,y隨x的增大而增大,即可求出.
解答:解:∵y=-x2+2x-2=-(x-1)2-1,
a=-1<0,拋物線開口向下,對稱軸為直線x=1,
∴當x≤1時,y隨x的增大而增大,
故只有選項C,D這兩個范圍符合要求,又因為C選項范圍包括選項D的范圍,
故選:C.
點評:本題考查了二次函數(shù)y=ax2+bx+c(a≠0)的性質:二次函數(shù)的頂點式為y=a(x+
b
2a
2+
4ac-b2
4a
,對稱軸為直線x=-
b
2a
,a>0,拋物線開口向上,在對稱軸左側y隨x的增大而減;a<0,拋物線開口向下,在對稱軸左側y隨x的增大而增大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點,且A,B兩點間的距離為d,例如,通過研究其中一個函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關數(shù)據(jù).
(1)在表內的空格中填上正確的數(shù);
(2)根據(jù)上述表內d與△的值,猜想它們之間有什么關系?再舉一個符合條件的二次函數(shù),驗證你的猜想;
(3)對于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一精英家教網(wǎng)種不同于(3)的正確證明嗎?我們將對你的出色表現(xiàn)另外獎勵3分.
y=x2+px+q  x1 x2 
y=x2-5x+6  -5  6  1  1
y=x2-
1
2
-
1
2
 
   
1
4
   
1
2
 
y=x2+x-2    -2   -2    3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于函數(shù)y=-x2+2x-2,當x≤a時,y隨x的增大而增大,則a的范圍為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于函數(shù)y=x2-14x+5,下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在同一坐標系中,畫出函數(shù)y=-x2和y=-x2+1的圖象,根據(jù)圖象回答:
(1)拋物線y=-x2+1經過怎樣的平移得到拋物線y=-x2
(2)對于函數(shù)y=-x2+1:
①當x為何值時,y隨x的增大而減?
②當x為何值時,函數(shù)y有最大值?最大值是多少?
③求y=-x2+1的圖象與x軸、y軸的交點坐標.

查看答案和解析>>

同步練習冊答案