函數(shù)h=3.5t-4.9t2(t的單位:s,h的單位:m)可以描述小敏跳遠(yuǎn)時(shí)重心高度的變化,則他起跳后到重心最高時(shí)所用的時(shí)間約是( 。
A.0.36sB.0.63sC.0.70sD.0.71s

h=3.5t-4.9t2
=-4.9(t-
15
4
2+
5
8
,
∵-4.9<0
∴當(dāng)t=
5
14
≈0.36(s)時(shí),h最大.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平面直角坐標(biāo)系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),點(diǎn)C是AB的中點(diǎn),CD⊥AB且CD=AB.直線BE與y軸平行,點(diǎn)F是射線BE上的一個(gè)動(dòng)點(diǎn),連接AD、AF、DF.
(1)若點(diǎn)F的坐標(biāo)為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點(diǎn)P是此拋物線上一個(gè)動(dòng)點(diǎn),點(diǎn)Q在此拋物線的對稱軸上,以點(diǎn)A、F、P、Q為頂點(diǎn)構(gòu)成的四邊形是平行四邊形,請直接寫出點(diǎn)Q的坐標(biāo);
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當(dāng)∠DAF=45°時(shí),求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx+n與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0).
(1)求B點(diǎn)坐標(biāo);
(2)直線y=
1
2
x+4m+n
經(jīng)過點(diǎn)B.
①求直線和拋物線的解析式;
②點(diǎn)P在拋物線上,過點(diǎn)P作y軸的垂線l,垂足為D(0,d).將拋物線在直線l上方的部分沿直線l翻折,圖象的其余部分保持不變,得到一個(gè)新圖象G.請結(jié)合圖象回答:當(dāng)圖象G與直線y=
1
2
x+4m+n
只有兩個(gè)公共點(diǎn)時(shí),d的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點(diǎn),記為拋物線l2,求拋物線l2的函數(shù)表達(dá)式;
(2)設(shè)拋物線l2的頂點(diǎn)為C,請你判斷y軸上是否存在點(diǎn)K,使得∠BKC=90°,若存在,求出K點(diǎn)坐標(biāo),若不存在,請說明理由;
(3)拋物線l2與y軸交于點(diǎn)D,點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P,作y軸的平行線,交拋物線l2于點(diǎn)E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象交x軸于點(diǎn)A(x0,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的拋物線的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,拋物線上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)
1
2
<x<4時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖1,2中的一種).

設(shè)豎檔AB=x米,請根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長度均指各圖中所有黑線的長度和,所有橫檔和豎檔分別與AD,AB平行)
(Ⅰ)在圖1中,如果不銹鋼材料總長度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為3平方米?
(Ⅱ)在圖2中,如果不銹鋼材料總長度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c與直線y=x+1有兩個(gè)交點(diǎn)A、B.
(1)當(dāng)AB的中點(diǎn)落在y軸時(shí),求c的取值范圍;
(2)當(dāng)AB=2
2
,求c的最小值,并寫出c取最小值時(shí)拋物線的解析式;
(3)設(shè)點(diǎn)P(t,T)在AB之間的一段拋物線上運(yùn)動(dòng),S(t)表示△PAB的面積.
①當(dāng)AB=2
2
,且拋物線與直線的一個(gè)交點(diǎn)在y軸時(shí),求S(t)的最大值,以及此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時(shí),S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時(shí)點(diǎn)P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是(  )
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一位籃球運(yùn)動(dòng)員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案