以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( )
A.不能構(gòu)成三角形
B.這個(gè)三角形是等腰三角形
C.這個(gè)三角形是直角三角形
D.這個(gè)三角形是鈍角三角形
【答案】分析:由于內(nèi)接正三角形、正方形、正六邊形是特殊內(nèi)角的多邊形,可構(gòu)造直角三角形解答.
解答:解:(1)因?yàn)镺C=1,所以O(shè)D=1×sin30°=

(2)因?yàn)镺B=1,所以O(shè)E=1×sin45°=;

(3)因?yàn)镺A=1,所以O(shè)D=1×cos30°=
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103001057466048389/SYS201311030010574660483000_DA/3.png">)2+(2=(2,
所以這個(gè)三角形是直角三角形.

故選C
點(diǎn)評(píng):解答此題要明確:多邊形的半徑、邊心距、中心角等概念,根據(jù)解直角三角形的知識(shí)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則(  )
A、不能構(gòu)成三角形B、這個(gè)三角形是等腰三角形C、這個(gè)三角形是直角三角形D、這個(gè)三角形是鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊長為三邊作三角形,則( 。
A、這個(gè)三角形是等腰三角形B、這個(gè)三角形是直角三角形C、這個(gè)三角形是銳角三角形D、不能構(gòu)成三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張?jiān)跀?shù)學(xué)實(shí)踐活動(dòng)中,畫了一個(gè)Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心以AD長為半徑畫弧交AC于點(diǎn)E,如圖,則AE=
5
-1
5
-1
;此時(shí)小張發(fā)現(xiàn)AE2=AC•EC,請(qǐng)同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點(diǎn)E,接著構(gòu)造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應(yīng)用遷移:
利用上面的結(jié)論,直接寫出:
①半徑為2的圓內(nèi)接正十邊形的邊長為
5
-1
5
-1

②邊長為2的正五邊形的對(duì)角線的長為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》常考題集(26):3.3 圓與圓的位置關(guān)系(解析版) 題型:選擇題

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( )
A.不能構(gòu)成三角形
B.這個(gè)三角形是等腰三角形
C.這個(gè)三角形是直角三角形
D.這個(gè)三角形是鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省天門市石河中學(xué)中考數(shù)學(xué)模擬試卷5(解析版) 題型:選擇題

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( )
A.不能構(gòu)成三角形
B.這個(gè)三角形是等腰三角形
C.這個(gè)三角形是直角三角形
D.這個(gè)三角形是鈍角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案