(2010•宣武區(qū)一模)某次樂器比賽共有11名選手參加且他們的得分都互不相同.現(xiàn)在知道這次比賽按選手得分由高到低順序設(shè)置了6個獲獎名額.若已知某位選手參加這次比賽的得分,要判斷他能否獲獎,則下列描述選手比賽成績的統(tǒng)計量中,只需要知道( )
A.方差
B.平均數(shù)
C.眾數(shù)
D.中位數(shù)
【答案】分析:由于比賽設(shè)置了6個獲獎名額,共有11名選手參加,故應(yīng)根據(jù)中位數(shù)的意義分析.
解答:解:因為6位獲獎?wù)叩姆謹?shù)肯定是11名參賽選手中最高的,而且11個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有6個數(shù),故只要知道自己的分數(shù)和中位數(shù)就可以知道是否獲獎了.
故選D.
點評:此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學(xué)模擬試卷(02)(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市宣武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•宣武區(qū)一模)已知:將函數(shù)的圖象向上平移2個單位,得到一個新的函數(shù)圖象.
(1)寫出這個新的函數(shù)的解析式;
(2)若平移前后的這兩個函數(shù)圖象分別與y軸交于O,A兩點,與直線交于C,B兩點.試判斷以A,B,C,O四點為頂點四邊形形狀,并說明理由;
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)的圖象一部分,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市宣武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省揚州市揚州中學(xué)西區(qū)校中考數(shù)學(xué)三模試卷(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

同步練習(xí)冊答案