如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動,DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.

(1)當(dāng)AD=CD時(shí),求證:DE∥AC;
(2)探究:AD為何值時(shí),△BME與△CNE相似?
(3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?
【答案】分析:(1)由相似三角形的判定得出△DEB∽△ACB,從而得出角的關(guān)系,再由AD=CD,得出BD與AB的關(guān)系,即可求的結(jié)論.
(2)此題分兩種情況求解,△BME∽△CNE或△BME∽△ENC,根據(jù)相似三角形的性質(zhì)即可求得;
(3)根據(jù)四邊形的面積求解方法,利用分割法求不規(guī)則四邊形的面積,作輔助線EN⊥BD即可求得.
解答:(1)證明:∵AD=CD
∴∠DAC=∠DCA
∴∠BDC=2∠DAC
∵DE是∠BDC的平分線
∴∠BDC=2∠BDE
∴∠DAC=∠BDE
∴DE∥AC;
(2)解:(I)當(dāng)△BME∽△CNE時(shí),得∠MBE=∠NCE
∴BD=DC
∵DE平分∠BDC
∴DE⊥BC,BE=EC
又∠ACB=90°
∴DE∥AC
即BD=AB==5
∴AD=5
(II)當(dāng)△BME∽△ENC時(shí),得∠EBM=∠CEN
∴EN∥BD
∵EN⊥CD
∴BD⊥CD即CD是△ABC斜邊上的高
由三角形面積公式得AB•CD=AC•BC
∴CD=
∴AD=
綜上,當(dāng)AD=5或時(shí),△BME與△CNE相似;
(3)解:由角平分線性質(zhì)易得S△MDE=S△DEN=DM•ME
∵S四邊形MEND=S△BDE
BD•EM=DM•EM即DM=BD
∴EM是BD的垂直平分線
∴BE=DE,DM=BM,
∴BD=2BM,
∴∠EDB=∠DBE
∵∠EDB=∠CDE
∴∠DBE=∠CDE
∵∠DCE=∠BCD
∴△CDE∽△CBD
①,

∵BC=8,
即CD=
∴cosB=
∴CD=4×=5
由①式得CE=
∴BE=
∴BM=BE•cosB=
∴AD=AB-2BM=10-2×=
點(diǎn)評:此題考查了平行線的判定,還考查了相似三角形的判定與性質(zhì),解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用,要注意不規(guī)則圖形的面積的求解方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動,直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動時(shí)間為x秒,運(yùn)動后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動過程中,四邊形BDG′G能否是菱形?若能,請求出此時(shí)x的值;若不能,請說明理由;
探究2:設(shè)在運(yùn)動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動,DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網(wǎng)
(1)當(dāng)AD=CD時(shí),求證:DE∥AC;
(2)探究:AD為何值時(shí),△BME與△CNE相似?
(3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長;
(2)若一個(gè)扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長,并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
說明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
(1)求AA1的長;
(2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
 

(3)在Rt△A2B2C中按上述操作,則AA3的長為
 

(4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
 

查看答案和解析>>

同步練習(xí)冊答案