我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在100元到300元之間較為合理.當(dāng)銷售單價定為100元時,年銷售量為20萬件;當(dāng)銷售單價超過100元,但不超過200元時,每件新產(chǎn)品的銷售價格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價超過200元,但不超過300元時,每件產(chǎn)品的銷售價格每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價應(yīng)定為多少元?
【答案】分析:(1)根據(jù)題意,列出分段函數(shù).
(2)根據(jù)條件,求出二次函數(shù)解析式,從中找出最值以及相應(yīng)的自變量范圍.
(3)分情況進(jìn)行討論,找出最值以及相應(yīng)的自變量取值范圍.
解答:解:(1)這個顯然是一個分段函數(shù),
y=20-
=-0.08x+28
100<x≤200,
可見x=200元時,y=28-16=12(萬件),
y=12-=-0.1x+32,200<x≤300.

(2)投資成本為480+1520=2000萬元
y=-0.08x+28,100<x≤200,
w=xy-40y-2000
=(x-40)(-0.08x+28)-2000
=-0.08x2+31.2x-3120
=-0.08(x-195)2-78
可見第一年在100<x≤200注定虧損,x=195時虧損最少,為78萬元
200<x≤300,y=-0.1x+32,
w=xy-40y-2000
=(x-40)(-0.1x+32)-2000
=-0.1x2+36x-3280
=-0.1(x-180)2-40
可見第一年在200<x≤300注定虧損,x=200時虧損最少,為80萬元
綜上可見,x=195時虧損最少,為78萬元.

(3)兩年的總盈利不低于1842萬元,可見第二年至少要盈利1842+78=1920萬元,既然兩年一塊算,第二年我們就不用算投資成本那2000萬元了.
第二年:
100<x≤200時
第二年盈利=xy-40y=-0.08(x-195)2+1922≥1920
解不等式得到:190≤x≤200
200<x≤300時
第二年盈利=xy-40y=-0.1(x-180)2+1960≥1920
解不等式得到:160≤x≤200,聯(lián)合200<x≤300,也就只有x=200
綜上有190≤x≤200為解
這時候再看y=-0.08x+28,可見x=190時,y最大,為12.8
所以定價190元時候,銷售量最大.
點(diǎn)評:此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在100元到300元之間較為合理.當(dāng)銷售單價定為100元時,年銷售量為20萬件;當(dāng)銷售單價超過100元,但不超過200元時,每件新產(chǎn)品的銷售價格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價超過200元,但不超過300元時,每件產(chǎn)品的銷售價格每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)查發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在200元到300元之間較為合理,銷售單價x元與年銷售量y萬件之間的變化可近似的看作是如下表所反映的一次函數(shù):
銷售單價x(元) 200 230 250
年銷售量y(萬件) 10 7 5
(1)請求出y與x間的函數(shù)關(guān)系式;并直接寫出自變量x的取值范圍;
(2)請說明投資的第一年,該公司是盈利還是虧損?若贏利,最大利潤是多少?若虧損,最少虧損多少?
(3)在(2)的前提下,即在第一年盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利達(dá)1790萬元,若能,求出第二年的產(chǎn)品售價;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(26):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在100元到300元之間較為合理.當(dāng)銷售單價定為100元時,年銷售量為20萬件;當(dāng)銷售單價超過100元,但不超過200元時,每件新產(chǎn)品的銷售價格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價超過200元,但不超過300元時,每件產(chǎn)品的銷售價格每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在100元到300元之間較為合理.當(dāng)銷售單價定為100元時,年銷售量為20萬件;當(dāng)銷售單價超過100元,但不超過200元時,每件新產(chǎn)品的銷售價格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價超過200元,但不超過300元時,每件產(chǎn)品的銷售價格每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案