【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長(zhǎng)是__.
【答案】﹢1
【解析】
試題首先考慮到BE所在的三角形并不是特殊三角形,所以猜想到要求BE,可能需要構(gòu)造直角三角形.由旋轉(zhuǎn)的性質(zhì)可知,AC=AE,∠CAE=60°,故△ACE是等邊三角形,可證明△ABE與△CBE全等,可得到∠ABE=45°,∠AEB=30°,再證△AFB和△AFE是直角三角形,然后在根據(jù)勾股定理求解
解:連結(jié)CE,設(shè)BE與AC相交于點(diǎn)F,如下圖所示,
∵Rt△ABC中,AB=BC,∠ABC=90°
∴∠BCA=∠BAC=45°
∵Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°與Rt△ADE重合,
∴∠BAC=∠DAE=45°,AC=AE
又∵旋轉(zhuǎn)角為60°
∴∠BAD=∠CAE=60°,
∴△ACE是等邊三角形
∴AC=CE=AE=4
在△ABE與△CBE中,
∴△ABE≌△CBE (SSS)
∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°
∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°
∴∠AFB=∠AFE=90°
在Rt△ABF中,由勾股定理得,
BF=AF==2
又在Rt△AFE中,∠AEF=30,°∠AFE=90°
FE=AF=2
∴BE=BF+FE=2+2
故,本題的答案是:2+2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“作中邊上的高線(xiàn)”的尺規(guī)作圖過(guò)程.
已知:.
求作:中邊上的高線(xiàn).
作法:如圖,
①以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,兩弧在下方交于點(diǎn);
②連接交于點(diǎn).
所以線(xiàn)段是中邊上的高線(xiàn).
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵ , ,
∴點(diǎn),分別在線(xiàn)段的垂直平分線(xiàn)上( )(填推理的依據(jù)).
∴垂直平分線(xiàn)段.
∴線(xiàn)段是中邊上的高線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶(hù)以1500元/畝的單價(jià)承包了15畝地種植板栗,每畝種植80株優(yōu)質(zhì)板栗嫁接苗,購(gòu)買(mǎi)嫁接苗,購(gòu)買(mǎi)價(jià)格為5元/株,且每畝地的管理費(fèi)用為800元,一年下來(lái)喜獲豐收平均每畝板栗產(chǎn)量為600kg,已知當(dāng)?shù)匕謇醯呐l(fā)和;零售價(jià)格分別如下表所示:
銷(xiāo)售方式 | 批發(fā) | 零售 |
售價(jià)(元/kg) | 10 | 14 |
通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),批發(fā)與零售的總銷(xiāo)量只能達(dá)到總產(chǎn)量的70%,其中零售量不高于總銷(xiāo)售量的40%,經(jīng)多方協(xié)調(diào)當(dāng)?shù)厥称芳庸S(chǎng)承諾以7元/kg的價(jià)格收購(gòu)該農(nóng)戶(hù)余下的板栗,設(shè)板栗全部售出后的總利潤(rùn)為y元,其中零售x kg.
(1)求y與x之間的函數(shù)關(guān)系
(2)求該農(nóng)戶(hù)所收獲的最大利潤(rùn)
(總利潤(rùn)=總銷(xiāo)售額-總承包費(fèi)用-購(gòu)買(mǎi)板栗苗的費(fèi)用-總管理費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用棋子按下面的規(guī)律擺圖形,則擺第2018個(gè)圖形需要圍棋子( 。┟叮
A. 6053B. 6054C. 6056D. 6060
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正方體的6個(gè)面分別涂上不同的顏色,并畫(huà)上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況如下表:
顏色 | 紅 | 黃 | 藍(lán) | 白 | 紫 | 綠 |
花朵數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個(gè)正方體拼成一個(gè)在同一平面上放置的長(zhǎng)方體,如圖所示,那么長(zhǎng)方體的下底面共有_____朵花.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)A(﹣6,0),點(diǎn)B在原點(diǎn),CA=CB=5,把等腰三角形ABC沿x軸正半軸作無(wú)滑動(dòng)順時(shí)針?lè)D(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線(xiàn)折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長(zhǎng)為 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為 ;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線(xiàn)AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照下列要求畫(huà)圖并填空:
(1)畫(huà)出邊的高,垂足為,則點(diǎn)到直線(xiàn)的距離是線(xiàn)段______的長(zhǎng).
(2)用直尺和圓規(guī)作出的邊的垂直平分線(xiàn),分別交直線(xiàn)、于點(diǎn)、,聯(lián)結(jié),則線(xiàn)段是的______(保留作圖痕跡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com