精英家教網(wǎng)如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線(xiàn)OB于E,連接EC、CD.
(1)求證:直線(xiàn)AB是⊙O的切線(xiàn);
(2)若OA=10cm,AB=16cm,求tan∠CED的值.
分析:(1)連接OC,根據(jù)OA=OB,CA=CB,可以證明OC⊥AB,利用切線(xiàn)的判定定理,經(jīng)過(guò)半徑的外端,并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn),得到AB是⊙O的切線(xiàn);
(2)證得△BCD∽△BEC后利用相似三角形的性質(zhì)求得BD的長(zhǎng),然后利用正切的定義表示出∠CED的正切值即可.
解答:精英家教網(wǎng)解:(1)證明:如圖,連接OC.
∵OA=OB,CA=CB,
∴OC⊥AB.
∴AB是⊙O的切線(xiàn);

(2)∵OB=OA=10,BC=AC=8,
∴OC=OD=6,
∴BD=BO-OD=10-6=4,
易證,∠DCB=∠E,
∵∠B=∠B,
∴△BCD∽△BEC,
DC
EC
=
BD
BC
=
4
8
=
1
2

∴tan∠CED=
DC
EC
=
1
2
,
點(diǎn)評(píng):本題考查切線(xiàn)的判定及性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識(shí),包括切線(xiàn)的判定,線(xiàn)段等量關(guān)系的證明及線(xiàn)段長(zhǎng)度的求法,要求學(xué)生掌握常見(jiàn)的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,直線(xiàn)AB經(jīng)過(guò)⊙O的圓心,與⊙O相交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30度.點(diǎn)E是直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)O不重合),直線(xiàn)EC交⊙O于D,則使DE=DO的點(diǎn)E共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)AB經(jīng)過(guò)⊙O的圓心,與⊙O相交于點(diǎn)A、B,點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn)(與O不重合),直線(xiàn)PC與⊙O相交于點(diǎn)Q,問(wèn):點(diǎn)P在直線(xiàn)AB的什么位置上時(shí),QP=QO?這樣的點(diǎn)P共有幾個(gè)?并相應(yīng)地求出∠OCP的度數(shù).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,直線(xiàn)OB交⊙O于點(diǎn)E,D,連接EC,精英家教網(wǎng)CD.
(1)試判斷直線(xiàn)AB與⊙O的位置關(guān)系,并加以證明;
(2)求證:BC2=BD•BE;
(3)若tanE=
12
,⊙O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•順義區(qū)二模)如圖,直線(xiàn)AB經(jīng)過(guò)第一象限,分別與x軸、y軸交于A、B兩點(diǎn),P為線(xiàn)段AB上任意一點(diǎn)(不與A、B重合),過(guò)點(diǎn)P分別向x軸、y軸作垂線(xiàn),垂足分別為C、D.設(shè)OC=x,四邊形OCPD的面積為S.
(1)若已知A(4,0),B(0,6),求S與x之間的函數(shù)關(guān)系式;
(2)若已知A(a,0),B(0,b),且當(dāng)x=
3
4
時(shí),S有最大值
9
8
,求直線(xiàn)AB的解析式;
(3)在(2)的條件下,在直線(xiàn)AB上有一點(diǎn)M,且點(diǎn)M到x軸、y軸的距離相等,點(diǎn)N在過(guò)M點(diǎn)的反比例函數(shù)圖象上,且△OAN是直角三角形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案