(1997•山東)如圖,在△ABC中,∠B=22.5°,邊AB的垂直平分線交BC于D,DF⊥AC于F,并與BC邊上的高AE交于G.求證:EG=EC.
分析:連接AD,求出DE=AE,∠GDE=∠CAE,證△DEG≌△AEC,根據(jù)全等三角形的性質(zhì)推出即可.
解答:證明:
連接AD,
∵邊AB的垂直平分線交BC于D,
∴BD=AD,
∴∠B=∠BAD=22.5°,
∴∠ADE=22.5°+22.5°=45°,
∵AE⊥BC,
∴∠AEC=∠AED=90°,
∴∠DAE=45°=∠ADE,
∴DE=AE,
∵DF⊥AC,
∴∠DFC=90°=∠AEC,
∴∠ACE+∠FDC=90°,∠ACD+∠CAE=90°,
∴∠CAE=∠FDC,
在△DEG和△AEC中
∠DEA=∠AEC
DE=AE
∠GDE=∠CAE

∴△DEG≌△AEC(ASA),
∴EG=EC.
點評:本題考查了全等三角形的性質(zhì)和判定,三角形的外角性質(zhì),等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1997•山東)如圖,ABCD是一個正方形,P、Q是正方形外兩點,且△APD和△BCQ是等邊三角形,則∠PQD的正切值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•山東)如圖,AB是⊙O的弦,C是弦AB上一點,且BC:CA=2:1,連接OC并延長交⊙O于D,若DC=2cm,OC=3cm,則圓心O到弦AB的距離為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•山東)如圖,已知A是⊙O上一點,以A為圓心作圓交⊙O于B、C兩點,E是弦BC上一點,連接AE并延長⊙O于D,連接BD、CD.設∠BDC=2α.
(1)求證:BD•CD=AD•ED;
(2)若ED:AD=
3
4
cos2α,求作一個以
DB
AD
CD
AD
為根的一元二次方程,并求出
BD
CD
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年山東省中考數(shù)學試卷(解析版) 題型:選擇題

(2000•山東)某市自來水公司年度利潤表如圖,觀察該圖表可知,下列四個說法中錯誤的是( )

A.1996年的利潤比1995年的利潤增長-2145.33萬元
B.1997年的利潤比1996年的利潤增長5679.03萬元
C.1998年的利潤比1997年的利潤增長315.51萬元
D.1999年的利潤比1998年的利潤增長-7706.77萬元

查看答案和解析>>

同步練習冊答案