如圖所示①,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=

     ①                 ②                ③          ④
(1)求證:△ABE≌△ADF;
(2)閱讀下面材料:
如圖②,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
如圖③,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
如圖④,以點A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置。
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換。
回答下列問題:
①在圖①中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?
②指出圖①中線段BE與DF之間的關(guān)系。
解:(1)∵四邊形ABCD為正方形,
∴AB=AD,∠FAD=EAB=90°,
又∵E是AD的中點,
,
 ∴AF=AE,
在△ADF 與△ABE中,
AD=AB,∠FAD=∠EAB,AF=AE,
∴△ADF≌△ABE(SAS);
(2)①旋轉(zhuǎn);②大小相等并且互相垂直。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,4),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對稱圖形△A′B′C′.(不用寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);
(3)作出△ABC關(guān)于直線x=1對稱的圖形△A′B′C′,并寫出點A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,5),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對稱圖形△A′B′C′.(不用寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對稱圖形△A'B'C'.(不用寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆吉林省松原市扶余縣八年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,5),按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);

(3)作出△ABC關(guān)于軸的對稱圖形△A′B′C′.(不用寫作法)

 

查看答案和解析>>

同步練習(xí)冊答案