【題目】如圖,AB∥CD,直線EF分別與AB,CD相交于M,N,∠AME=60°

1)求∠DNF的度數(shù);

2)若∠P=90°,∠2=∠6=60°,求證:MP平分∠BMN

【答案】1∠DNF =60°;(2)見解析

【解析】

(1)利用對頂角相等和兩直線平行同位角相等可求;

(2)先利用鄰補角互補及已知條件求出∠1=∠5=60°,最后借助平行線及角的和差求出∠3=∠4=30°,即可說明MP平分∠BMN

解:(1)∵AB∥CD,∠AME=60°,

∴∠CNE=∠AME=60°

∴∠DNF=∠CNE=60°

(2)證明:∵∠AME+∠1+∠2=180°,∠DNF+∠5+∠6=180°,

∠2=∠6=60°,∠AME=60°,∠DNF=60°,

∴∠1=∠5=60°,

∴MQ∥NP,

∴∠PMQ=∠P=90°

∴∠3=∠PMQ-∠2=30°

∵∠1+∠2+∠3+∠4=∠EMN=180°,

∴∠4=180°-∠1-∠2-∠3=30°

∴∠3=∠4

MP平分∠BMN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將含有30°角的直角三角板ABC放入平面直角坐標系,頂點A,B分別落在x、y軸的正半軸上,∠OAB60°,A的坐標為(1,0),將三角板ABC沿x軸向右作無滑動的滾動(先繞點A按順時針方向旋轉(zhuǎn)60°,再繞點C按順時針方向旋轉(zhuǎn)90°)當點B第一次落在x軸上時,則點B運動的路徑與坐標軸圍成的圖形面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民使用自來水按如下標準收費(水費按月繳納)

月用水量

單價

不超過的部分

超過但不超過的部分

超過的部分

1)當時,某用戶用了水,求該用戶這個月應該繳納的水費;

2)設某用戶用水量為立方米,求該用戶應繳納的水費(用含的式子表達)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

A. 有兩邊和其中一邊的對角對應相等的兩個三角形全等

B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直

C. 三角形的一個外角等于兩個內(nèi)角的和

D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E是等邊△ABC的邊BC上一點,以AE為邊作等邊△AEF,EFACD.

(1)連接CF,求證:

(2)如圖2,作EH AFAB于點H.

求證:

EH=2,ED=4,直接寫出BE的長為 _________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC是等邊三角形,P為平面內(nèi)的一個動點,BP=BA0<PBC<180 ,DB平分∠PBC,且DB=DA

1)當BPBA重合時(如圖1),求∠BPD的度數(shù);

2)當BP在∠ABC的內(nèi)部時(如圖2),求∠BPD的度數(shù);

3)當BP在∠ABC的外部時,請你直接寫出∠BPD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務從景區(qū)大門出發(fā),向東走2千米到達A景區(qū),繼續(xù)向東走2.5千米到達B景區(qū),然后又回頭向西走8.5千米到達C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務?請計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,是由一個等邊ABE和一個矩形BCDE拼成的一個圖形,其點B,C,D的坐標分別為(1,2),(1,1),(3,1).

(1)直接寫出E點和A點的坐標;

(2)試以點B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為31;

(3)直接寫出圖形A1B1C1D1E1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD中,A1,3, B2,-1, C5,-5

1D的坐標為____________.

2)若經(jīng)過原點的一條直線平分□ABCD的面積,求此直線的解析式

查看答案和解析>>

同步練習冊答案