在△ABC中,∠A、∠B、∠C的對(duì)邊分別用a、b、c表示.

(1)如圖1,在△ABC中,∠A=2∠B,∠A=60°,求證:a2=b(b+c);
(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.(1)中的三角形是一個(gè)特殊的倍角三角形,那么對(duì)于任意一個(gè)倍角△ABC,且∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)在(2)中,若∠B=36°,b=1,直接填空:a=______,cos36°=______(若結(jié)果是無理數(shù),請(qǐng)用無理數(shù)表示).
(4)應(yīng)用(3)的結(jié)論,解答下面問題:如圖2,一廠房屋頂人字架是等腰△ABC,其跨度BC=10m,∠B=∠C=36°,中柱AD⊥BC于D,則上弦AB的長是______m.(可能用到的數(shù):數(shù)學(xué)公式≈2.24,數(shù)學(xué)公式≈2.45,數(shù)學(xué)公式≈2.65)

(1)證明:∵∠A=2∠B,∠A=60°
∴∠B=30°,∠C=90°
∴c=2b,a=b
∴a2=3b2=b(b+c).

(2)解:關(guān)系式a2=b(b+c)仍然成立.
證明:∵∠A=2∠B
∴∠C=180°-∠A-∠B=180°-3∠B
由正弦定理得===2R,
即a=2RsinA,b=2RsinB,c=2RsinC
∴b(b+c)=2RsinB(2RsinB+2RsinC),
=4R2sinB[sinB+sin(180°-3∠B)]
=4R2sinB(sinB+sin3∠B)
=4R2sinB(2sin2BcosB)
=4R2sin2B×sin2B
=4R2sin22B
又∵a2=4R2sin2A=4R2sin22B
∴a2=b(b+c)
(3)如圖所示:

∵a2=b(b+c),a=c,b=1,
∴a=,
設(shè)AD=x,則BD=-x,
則AC2-AD2=BC2-BD2,即1-x2=(2-(-x)2,
解得:x=,BD=-,
故cos36°==

(4)由題意得,BD=BC=5m,
則AB===5(-1)≈6.2米.
分析:(1)根據(jù)已知可求得各角的度數(shù),再根據(jù)三角函數(shù)求得各邊的關(guān)系,從而不難得到結(jié)論.
(2)根據(jù)已知表示各角的度數(shù),再根據(jù)正弦定理對(duì)式子進(jìn)行整理,從而得到結(jié)論;
(3)畫出圖形,根據(jù)a2=b(b+c),a=c,b=1,可求出a,繼而可得出cos36°的值.
(4)先求出BD,再由cos36°的值可得出AB.
點(diǎn)評(píng):本題考查了勾股定理、解直角三角形及正弦定理的內(nèi)容,綜合考察的知識(shí)點(diǎn)較多,難度較大,解答本題需要同學(xué)們能活學(xué)活用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為(  )
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案