如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內(nèi),在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請你求出該大門的高h.

【答案】分析:解決拋物線的問題,需要合理地建立平面直角坐標系,用二次函數(shù)的性質(zhì)解答,建立直角坐標系的方法有多種,大體是以拋物線對稱軸為y軸(包括頂點在原點),拋物線經(jīng)過原點等等.
解答:解:解法一:如圖1,建立平面直角坐標系.
設拋物線解析式為y=ax2+bx.
由題意知B、C兩點坐標分別為B(18,0),C(17,1.7),
把B、C兩點坐標代入拋物線解析式得

解得
∴拋物線的解析式為
y=-0.1x2+1.8x
=-0.1(x2-18x+81-81)
=-0.1(x-9)2+8.1.
∴該大門的高h為8.1m.

解法二:如圖2,建立平面直角坐標系.
設拋物線解析式為y=ax2
由題意得B、C兩點坐標分別為B(9,-h),C(8,-h+1.7).
把B、C兩點坐標代入y=ax2

解得
∴y=-0.1x2
∴該大門的高h為8.1m.
說明:此題還可以以AB所在直線為x軸,AB中點為原點,建立直角坐標系,可得拋物線解析式為y=-0.1x2+8.1.
點評:建立適當?shù)闹苯亲鴺讼担鶕?jù)題目所給數(shù)據(jù)求點的坐標,再求拋物線解析式,解答題目的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內(nèi),在離門腳B點1m遠的D處,垂直地面立精英家教網(wǎng)起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請你求出該大門的高h.

查看答案和解析>>

科目:初中數(shù)學 來源:第34章《二次函數(shù)》中考題集(28):34.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內(nèi),在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請你求出該大門的高h.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(26):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內(nèi),在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請你求出該大門的高h.

查看答案和解析>>

科目:初中數(shù)學 來源:《第23章 二次函數(shù)與反比例函數(shù)》2010年單元測試卷(解析版) 題型:解答題

如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內(nèi),在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請你求出該大門的高h.

查看答案和解析>>

同步練習冊答案