閱讀下面材料,并解決問題:
由平方根的定義,我們知道(
5
)2=5
,2
3
×
3
=2×(
3
)2=2×3=6
(
7
+
2
)(
7
-
2
)=(
7
)2-(
2
)2=7-2=5
…,如果兩個無理數(shù)相乘的積是有理數(shù),我們稱它們是互為有理化因式,如
3
2
3
是互為有理化因式;
7
-
2
7
+
2
是互有理化因式.
(1)
 
3
2
是互為有理化因式;
 
5
+1
是互為有理化因式.
這種方法可以將分母是無理數(shù)的化為分母是有理數(shù),這個過程稱為分母有理化,如:
1
2
=
2
2
×
2
=
2
2
,
1
3
+
2
=
3
-
2
(
3
+
2
)(
3
-
2
)
=
3
-
2
(
3
)
2
-(
2
)
2
=
3
-
2
3-2
=
3
-
2
2
=
3
-
2

(2)
1
5
分母有理化的結果為
 
;
2
3
+1
分母有理化的結果為
 

(3)利用以上知識計算:
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
100
+
99
分析:根據(jù)互為有理化因式和分母有理化的定義可以解決這道題目.
如果兩個無理數(shù)相乘的積是有理數(shù),我們稱它們是互為有理化因式;可以將分母是無理數(shù)的化為分母是有理數(shù),這個過程稱為分母有理化.
解答:解:(1)
2
與3
2
相乘等于6,因此3
2
2
互為有理化因式,
5
-1
5
+1
相乘的結果是4,因此
5
+1
5
-1
互為有理化因式,
故應填
2
;
5
-1

(2)
1
5
=
5
5
×
5
=
5
5

2
3
+1
=
2(
3
-1)
(
3
+1)(
3
-1)
=
3
-1
;
故應填
5
5
3
-1.
(3)把
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…+
1
100
+
99

分母有理化得
2
-1+
3
-
2
+
4
-
3
+…+
100
-
99
=-1+10=9.
故結果為9.
點評:主要考查二次根式的有理化.根據(jù)二次根式的乘除法法則進行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點的式子.即一項符號和絕對值相同,另一項符號相反絕對值相同.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

22、閱讀下面材料,并解決問題:
(1)如圖(1),等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為3,4,5,則∠APB=
150°
,由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌
△ABP
這樣,就可以利用全等三角形知識,將三條線段的長度轉化到一個三角形中從而求出∠APB的度數(shù).
(2)請你利用第(1)題的解答思想方法,解答下面問題:已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學 來源:2011—2012學年安徽全椒八年級下第三次月考數(shù)學試卷(帶解析) 題型:解答題

閱讀下面材料,并解決問題:
(1)如下圖1,等邊△ABC內(nèi)有一點P若點P到頂點A,B,C的距離分別為3,4,5則∠APB=______,由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌_______這樣,就可以利用全等三角形知識,將三條線段的長度轉化到一個三角形中從而求出∠APB的度數(shù).
(2)請你利用第(1)題的解答思想方法,解答下面問題:已知:如圖2,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆安徽全椒八年級下第三次月考數(shù)學試卷(解析版) 題型:解答題

閱讀下面材料,并解決問題:

(1)如下圖1,等邊△ABC內(nèi)有一點P若點P到頂點A,B,C的距離分別為3,4,5則∠APB=______,由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌_______這樣,就可以利用全等三角形知識,將三條線段的長度轉化到一個三角形中從而求出∠APB的度數(shù).

(2)請你利用第(1)題的解答思想方法,解答下面問題:已知:如圖2,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料,并解決問題:

(1)如圖(10),等邊△ABC內(nèi)有一點P若點P到頂點A,BC的距離分別為3,4,5則

APB=__________。

分析:由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌__________這樣,就可以利用全等三角形知識,將三條線段的長度轉化到一個三角形中從而求出∠APB的度數(shù).

        

 (2)請你利用第(1)題的解答思想方法,解答下面問題:已知如圖(11),△ABC中,∠CAB=90°,AB=AC,EFBC上的點且∠EAF=45°,求證:EF2=BE2+FC2

查看答案和解析>>

同步練習冊答案