【題目】我市某林場(chǎng)計(jì)劃購(gòu)買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購(gòu)買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購(gòu)買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購(gòu)買多少株?
(3)在(2)的條件下,應(yīng)如何選購(gòu)樹苗,使購(gòu)買樹苗的費(fèi)用最低?并求出最低費(fèi)用.

【答案】
(1)解:設(shè)購(gòu)買甲種樹苗x株,則乙種樹苗y株,由題意得:

解得

答:購(gòu)買甲種樹苗500株,乙種樹苗300株


(2)解:設(shè)甲種樹苗購(gòu)買z株,由題意得:

85%z+90%(800﹣z)≥800×88%,

解得z≤320.

答:甲種樹苗至多購(gòu)買320株


(3)解:設(shè)購(gòu)買兩種樹苗的費(fèi)用之和為m,則

m=24z+30(800﹣z)=24000﹣6z,

在此函數(shù)中,m隨z的增大而減小

所以當(dāng)z=320時(shí),m取得最小值,其最小值為24000﹣6×320=22080元

答:購(gòu)買甲種樹苗320株,乙種樹苗480株,即可滿足這批樹苗的成活率不低于88%,又使購(gòu)買樹苗的費(fèi)用最低,其最低費(fèi)用為22080元


【解析】(1)根據(jù)關(guān)鍵描述語“購(gòu)買甲、乙兩種樹苗共800株,”和“購(gòu)買兩種樹苗共用21000元”,列出方程組求解.(2)先找到關(guān)鍵描述語“這批樹苗的成活率不低于88%”,進(jìn)而找到所求的量的等量關(guān)系,列出不等式求出甲種樹苗的取值范圍.(3)再根據(jù)題意列出購(gòu)買兩種樹苗的費(fèi)用之和與甲種樹苗的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的特征求出最低費(fèi)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃麻中學(xué)為了創(chuàng)建全省“最美書屋”,購(gòu)買了一批圖書,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格多5元,已知學(xué)校用12000元購(gòu)買的科普類圖書的本數(shù)與用5000元購(gòu)買的文學(xué)類圖書的本數(shù)相等,求學(xué)校購(gòu)買的科普類圖書和文學(xué)類圖書平均每本的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個(gè)不同地方按不同銷售方案進(jìn)行銷售,以便開拓市場(chǎng). 若只在甲城市銷售,銷售價(jià)格為y(元/件)、月銷量為x(件),y是x的一次函數(shù),如表,

月銷量x(件)

1500

2000

銷售價(jià)格y(元/件)

185

180

成本為50元/件,無論銷售多少,每月還需支出廣告費(fèi)72500元,設(shè)月利潤(rùn)為W(元)
(利潤(rùn)=銷售額﹣成本﹣廣告費(fèi)).
若只在乙城市銷售,銷售價(jià)格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷量為x(件)時(shí),每月還需繳納 x2元的附加費(fèi),設(shè)月利潤(rùn)為W(元)(利潤(rùn)=銷售額﹣成本﹣附加費(fèi)).
(1)當(dāng)x=1000時(shí),y=元/件,w=元;
(2)分別求出W , W與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在甲城市銷售的月利潤(rùn)最大?若在乙城市銷售月利潤(rùn)的最大值與在甲城市銷售月利潤(rùn)的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請(qǐng)你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤(rùn)較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2015=( )
A.(31,50)
B.(32,47)
C.(33,46)
D.(34,42)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2= (k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1>0時(shí),寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知經(jīng)過原點(diǎn)的拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是直線x=﹣1,下列結(jié)論中:
①ab>0,②a+b+c>0,③當(dāng)﹣2<x<0時(shí),y<0.
正確的個(gè)數(shù)是(  )

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案