【題目】1是某酒店的推拉門,已知門的寬度AD=2米,兩扇門的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉67°(如圖2所示).

參考數(shù)據(jù):(sin67°≈0.92,cos67°≈0.39,tan29.6°≈057,tan19.6°≈0.36,sin29.6°≈0.49

1)求點C到直線AD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉,設旋轉角為a(如圖3所示),問當a為多少度時,點BC之間的距離最短.

【答案】1)點C到直線AD的距離為0.92米;(2)當旋轉角為a29.6°時,點B,C之間的距離最短.

【解析】

利用三角函數(shù)的應用(1)作CEADAD于點E,根據(jù),求出CE的值,即C點到AD的距離.2)要使點BC之間的距離最短,只需滿足AB所在的直線經過點C.由(1)可知CE的長利用cos67°求出DE的長,然后算出AE,根據(jù)tanA= ,求出∠A的度數(shù).

1)解: CEADAD于點E

sin 67°=

CE=CD sin 67°=1×0.92=0.92

∴點C到直線AD的距離為0.92米.

2)解:要使點B,C之間的距離最短,只需滿足AB所在的直線經過點C.(如圖3

由(1)知CE=0.92DE=CD cos67°=1×0.39=0.39

AE=2-0.39=1.61

∴在RtAEC中,tanA= =≈0.57

∴∠A=29.6°

即當旋轉角為a29.6°時,點B,C之間的距離最短.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,

1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:;

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經過點;③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,點在邊上,,.是線段上一動點,當半徑為6的圓的一邊相切時,的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】箭頭四角形,模型規(guī)律:如圖1,延長COAB于點D,則.因為凹四邊形ABOC形似箭頭,其四角具有“”這個規(guī)律,所以我們把這個模型叫做“箭頭四角形”.模型應用:

1)直接應用:

①如圖2

②如圖3,2等分線(即角平分線)交于點F,已知,則

③如圖4,分別為2019等分線.它們的交點從上到下依次為.已知,則

2)拓展應用:如圖5,在四邊形ABCD中,O是四邊形ABCD內一點,且.求證:四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形OAB中,點C是弧AB上任意一點(不與點A,B重合),CDOAOB于點D,點IOCD的內心,連結OI,BI.若∠AOB=β,則∠OIB等于(

A. 180°βB. 180°-βC. 90°+ βD. 90°+β

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級全體男生1000米跑步的成績,隨機抽取了部分男生進行測試,并將測試成績分為、、、四個等級,繪制如下不完整的統(tǒng)計圖表,如題圖表所示,根據(jù)圖表信息解答下列問題:

成績等級頻數(shù)分布表

成績等級

頻數(shù)

A

24

B

10

C

x

D

2

合計

y

成績等級扇形統(tǒng)計圖

1x=______,y=______,扇形圖中表示的圓心角的度數(shù)為______度;

2)甲、乙、丙是等級中的三名學生,學校決定從這三名學生中隨機抽取兩名介紹體育鍛煉經驗,用列表法或畫樹狀圖法,求同時抽到甲、乙兩名學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形中,,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點.設直線向右平移的距離為,線段的長為,且的函數(shù)關系如圖2所示,則四邊形的周長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,各個角都相等,各條邊都相等的多邊形叫做正多邊形.對一個各條邊都相等的凸多邊形(邊數(shù)大于3),可以由若干條對角線相等判定它是正多邊形.例如,各條邊都相等的凸四邊形,若兩條對角線相等,則這個四邊形是正方形.

1)已知凸五邊形的各條邊都相等.

①如圖1,若,求證:五邊形是正五邊形;

②如圖2,若,請判斷五邊形是不是正五邊形,并說明理由:

2)判斷下列命題的真假.(在括號內填寫

如圖3,已知凸六邊形的各條邊都相等.

①若,則六邊形是正六邊形;(   

②若,則六邊形是正六邊形.    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個兒童游樂場所,由于周末小朋友較多,老板計劃將場地擴建,擴建前平面圖為ABC,BC=10,∠ABC=∠ACB=36°,擴建后頂點DBA的延長線上,BDC=90°,求擴建后AB邊增加部分AD的長.結果精確到0.1米.參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

同步練習冊答案