精英家教網 > 初中數學 > 題目詳情
(2010•西城區(qū)一模)如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點,與雙曲線交于點B.
(1)求直線AB的解析式;
(2)若點B的縱坐標為m,求k的值(用含有m的式子表示).

【答案】分析:(1)根據平移的特點,設直線AB的解析式為y=4x+b,將點A代入得b的值,從而確定直線AB的解析式;
(2)將點B的縱坐標m代入直線AB的解析式,求出橫坐標,最后求得k的值.
解答:解:(1)設直線AB的解析式為y=4x+b,將點A代入得9+b=0,
解得b=-9,
∴直線AB的解析式為y=4x-9;

(2)把y=m代入y=4x-9得x=,
∵點B在雙曲線上,
∴k=xy=•m=
點評:本題主要考查了待定系數法求一次函數的解析式.是一道基礎題型,同學們要熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年北京市西城區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:關于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數量,方程總有實數根;
(2)若二次函數y1=mx2-3(m-1)x+2m-3的圖象關于y軸對稱;
①求二次函數y1的解析式;
②已知一次函數y2=2x-2,證明:在實數范圍內,對于x的同一個值,這兩個函數所對應的函數值y1≥y2均成立;
(3)在(2)條件下,若二次函數y3=ax2+bx+c的圖象經過點(-5,0),且在實數范圍內,對于x的同一個值,這三個函數所對應的函數值y1≥y3≥y2均成立,求二次函數y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市文瀾中學中考數學模擬試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,在平面直角坐標系xOy中,一次函數y=x+3的圖象與x軸交于點A,與y軸交于點B,點C的坐標為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點P在線段BC的延長線上,連接AP,作AP的垂直平分線,垂足為點D,并與y軸交于點E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數;
②若點P在線段BC的延長線上運動(P不與點C重合),∠AEP的度數是否變化?若變化,請說明理由;若不變,求出∠AEP的度數;
(3)在(2)的條件下,若點P從C點出發(fā)在BC的延長線上勻速運動,速度為每秒1個單位長度.EC與AP交于點F,設△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運動時間為t(t>0)秒時,求y關于t的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2010年北京市西城區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,在平面直角坐標系xOy中,一次函數y=x+3的圖象與x軸交于點A,與y軸交于點B,點C的坐標為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點P在線段BC的延長線上,連接AP,作AP的垂直平分線,垂足為點D,并與y軸交于點E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數;
②若點P在線段BC的延長線上運動(P不與點C重合),∠AEP的度數是否變化?若變化,請說明理由;若不變,求出∠AEP的度數;
(3)在(2)的條件下,若點P從C點出發(fā)在BC的延長線上勻速運動,速度為每秒1個單位長度.EC與AP交于點F,設△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運動時間為t(t>0)秒時,求y關于t的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2010年北京市西城區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長.

查看答案和解析>>

同步練習冊答案