如圖,AB是⊙O的弦,D是半徑OA的中點(diǎn),過(guò)D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于F,且CE=CB。
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);(3)如果CD=15,BE=10,sinA=,求⊙O的半徑。
(1)見(jiàn)解析;(2)30 °(3).
【解析】
試題分析:(1)連接OB,有圓的半徑相等和已知條件證明∠OBC=90°即可證明BC是⊙O的切線;
(2)連接OF,AF,BF,首先證明△OAF是等邊三角形,再利用圓周角定理:同弧所對(duì)的圓周角是所對(duì)圓心角的一半即可求出∠ABF的度數(shù);
(3)過(guò)點(diǎn)C作CG⊥BE于點(diǎn)G,由CE=CB,可求出EG=BE=5,又Rt△ADE∽R(shí)t△CGE和勾股定理求出DE=2,由Rt△ADE∽R(shí)t△CGE求出AD的長(zhǎng),進(jìn)而求出⊙O的半徑.
試題解析:
(1)證明:連接OB
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC
又∵CD⊥OA
∴∠A+∠AED=∠A+∠CEB=90 °
∴∠OBA+∠ABC=90 °
∴OB⊥BC
∴BC是⊙O的切線.
(2)連接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴△OAF是等邊三角形,
∴∠AOF=60 °
∴∠ABF=∠AOF=30 °
(3)過(guò)點(diǎn)C作CG⊥BE于點(diǎn)G,由CE=CB,
∴EG=BE=5
又Rt△ADE∽R(shí)t△CGE
∴sin∠ECG=sin∠A=,
∴CE==13
∴CG==12,
又CD=15,CE=13,
∴DE=2,
由Rt△ADE∽R(shí)t△CGE得
∴AD==
∴⊙O的半徑為2AD=.
考點(diǎn):1.直線與圓的位置關(guān)系;2.等邊三角形;3.相似三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
25 |
2 |
25 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com