【題目】如圖,在邊長為1的正方形網格中,點A(3,4),⊙A的半徑為.
(1)請在網格中畫出⊙A;
(2)請標出⊙A上的三個相鄰的格點B1、B2、B3,連接B1B3,則由和弦B1B3圍成的弓形面積為 ;
(3)線段CD,點C(6,4)、D(5,1),在⊙A上有一點M,使△CDM的面積最大,請找到此時的點M(保留必要輔助格點N).
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙0的直徑,點C在⊙0上,D是中點,若∠BAC=70°,求∠C.
下面是小雯的解法,請幫他補充完整:
解:在⊙0中,
∵D是的中點
∴BD=CD.
∴∠1=∠2( )(填推理的依據).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個點都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據).
∴∠C=180°-∠B= (填計算結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內角∠BAC、∠ABC的平分線,過點A作AE⊥AD,交BD的延長線于點E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A.三角形的外心一定在三角形的外部B.三角形的內心到三個頂點的距離相等
C.外心和內心重合的三角形一定是等邊三角形D.直角三角形內心到兩銳角頂點連線的夾角為125°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).
(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;
(2)求除點(2,0)外△ABC所有自相似點的坐標;
(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】孔明同學對本校學生會組織的“為貧困山區(qū)獻愛心”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.如圖是根據這組數據繪制的統計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調查中捐款30元的學生一共16人.
(1)孔明同學調查的這組學生共有_______人;
(2)這組數據的眾數是_____元,中位數是_____元;
(3)若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為,,,并且設置了相應的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為,,.
(1)小亮將媽媽分類好的三類垃圾隨機投入到三種垃圾箱內,請用畫樹狀圖或表格的方法表示所有可能性,并請求出小亮投放正確的概率.
(2)請你就小亮投放垃圾的事件提出兩條合理化建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形的四個頂點分別在正方形的四條邊上.,分別交,,于點,,,且.要求得平行四邊形的面積,只需知道一條線段的長度.這條線段可以是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖像如圖所示,下面結論:①;②;③函數的最小值為;④當時,;⑤當時,(、分別是、對應的函數值).正確的個數為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com