【題目】如圖,在中,, , ,,連接,交于點(diǎn),連接.下列結(jié)論:①;②,③平分;④平分.其中正確的為___________

【答案】①②

【解析】

SAS證明△AOC≌△BOD得出∠OCA=∠ODB,ACBD,①正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB40°,②正確;作OGMCG,OHMBH,如圖所示:則∠OGC=∠OHD90°,由AAS證明△OCG≌△ODHAAS),得出OGOH,由角平分線的判定方法得出MO平分∠BMC,④正確;由∠AOB=∠COD,得出當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,假設(shè)∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OBOC,而OAOB,所以OAOC,而OAOC,故③錯(cuò)誤;即可得出結(jié)論.

∵∠AOB=∠COD40°,

∴∠AOB+∠AOD=∠COD+∠AOD

即∠AOC=∠BOD,

在△AOC和△BOD中,

,

∴△AOC≌△BODSAS),

∴∠OCA=∠ODB,ACBD,①正確;

∴∠OAC=∠OBD,

由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,

∴∠AMB=∠AOB40°,②正確;

OGMCG,OHMBH,如圖2所示:

則∠OGC=∠OHD90°,

在△OCG和△ODH中,

∴△OCG≌△ODHAAS),

OGOH

MO平分∠BMC,④正確;

∵∠AOB=∠COD,

∴當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,

假設(shè)∠DOM=∠AOM

∵△AOC≌△BOD,

∴∠COM=∠BOM,

MO平分∠BMC,

∴∠CMO=∠BMO

在△COM和△BOM中,

,

∴△COM≌△BOMASA),

OBOC,

OAOB

OAOC

OAOC矛盾,

∴③錯(cuò)誤;

故答案為:①②.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,PAB=38.5°,PBA=26.5°.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.已知CD=2,則AB的長(zhǎng)度等于____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)兩種商品,購買1個(gè)商品比購買1個(gè)商品多花10元,并且花費(fèi)300元購買商品和花費(fèi)100元購買商品的數(shù)量相等.

1)求購買一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn)并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).

(1)求二次函數(shù)的解析式;

(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);

(3)該二次函數(shù)的對(duì)稱軸交x軸于C點(diǎn),連接BC,并延長(zhǎng)BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=2x-2的圖像與y軸交于點(diǎn)A,直線y2=-2x+6的圖像與y軸交于點(diǎn)B,兩者相交于點(diǎn)C.

(1)方程組的解是______;

(2)當(dāng)y1>0與y2>0同時(shí)成立時(shí),x的取值范圍為_____;

(3)求△ABC的面積;

(4)在直線y1=2x-2的圖像上存在異于點(diǎn)C的另一點(diǎn)P,使得△ABC與△ABP的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),交軸于點(diǎn),點(diǎn),是二次函數(shù)圖象上關(guān)于拋物線對(duì)稱軸的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn),

請(qǐng)直接寫出點(diǎn)的坐標(biāo);

求二次函數(shù)的解析式;

根據(jù)圖象直接寫出一次函數(shù)值大于二次函數(shù)值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(1,4),B(a,b),其中a>1.過點(diǎn)Ax軸垂線,垂足為C,過點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當(dāng)ADBC時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案