【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的頂點(diǎn)E在邊AB上,D,F兩點(diǎn)分別在邊AC,BC上,且,將矩形CDEF以每秒1個(gè)單位長(zhǎng)度的速度沿射線CB方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映S與t的函數(shù)關(guān)系的圖象為( 。
A.B.C.D.
【答案】D
【解析】
證明△DEF≌△BFE(AAS),則;分0≤t≤4、4<t≤8兩種情況,分別求出函數(shù)表達(dá)式,即可求解.
如圖1,連接DF,
∵,即tanB=tan∠EDF,
∴∠B=∠EDF,而∠DEF=∠EFB=90°,EF=EF,
∴△DEF≌△BFE(AAS),
∴,即點(diǎn)F是BC的中點(diǎn),
,
故矩形DCFE的面積為3×4=12;
當(dāng)0≤t≤4時(shí),如圖2,
設(shè)直線AB交D′C′F′E′于點(diǎn)H,
則EE′=t, ,
,
該函數(shù)為開口向下的拋物線,當(dāng)t=4時(shí),S=6;
當(dāng)4<t≤8時(shí),
同理可得:,
該函數(shù)為開口向上的拋物線;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念建國70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長(zhǎng)先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長(zhǎng)從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時(shí),函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:
x | … | 0 | 1 | 2 | 3 | … | |||||||||
y | … | 1 | 2 | 1 | 0 | 1 | 2 | … |
描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.
(1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點(diǎn)的分布,作出函數(shù)圖象;
(2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:
①點(diǎn),,,在函數(shù)圖象上, , ;(填“>”,“=”或“<”)
②當(dāng)函數(shù)值時(shí),求自變量x的值;
③在直線的右側(cè)的函數(shù)圖象上有兩個(gè)不同的點(diǎn),,且,求的值;
④若直線與函數(shù)圖象有三個(gè)不同的交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系中A點(diǎn)坐標(biāo)為(0,4),以OA為一邊在第一象限作平行四邊形OABC,對(duì)角線AC、OB相交于點(diǎn)E,AB=2OA.若反比例函數(shù)y=的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)E,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ABC=90°,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以BP為直徑作⊙O交BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)為E(點(diǎn)E在點(diǎn)P右側(cè)),連結(jié)DE、BE,已知AB=3,BC=6.
(1)求線段BE的長(zhǎng);
(2)如圖2,若BP平分∠ABC,求∠BDE的正切值;
(3)是否存在點(diǎn)P,使得△BDE是等腰三角形,若存在,求出所有符合條件的CP的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳普及新冠肺炎防治知識(shí),引導(dǎo)學(xué)生做好防控.某校舉行了主題為“防控新冠,從我做起”的線上知識(shí)競(jìng)賽活動(dòng),測(cè)試內(nèi)容為20道判斷題,每道題5分,滿分100分.為了解八、九年級(jí)學(xué)生此次競(jìng)賽成績(jī)的情況,分別隨機(jī)在八、九年級(jí)各抽取了20名參賽學(xué)生的成績(jī).已知抽查得到的八年級(jí)的數(shù)據(jù)如下:
80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.
為了便于分析數(shù)據(jù),統(tǒng)計(jì)員對(duì)八年級(jí)數(shù)據(jù)進(jìn)行了整理,得到了表一:
成績(jī)等級(jí) | 分?jǐn)?shù)(單位:分) | 學(xué)生數(shù) |
等 | 5 | |
等 | ||
等 | ||
等 | 2 |
八、九年級(jí)成績(jī)的平均數(shù)、中位數(shù)、優(yōu)秀率如下:(分?jǐn)?shù)80分以上、不含80分為優(yōu)秀)
年級(jí) | 平均數(shù) | 中位數(shù) | 優(yōu)秀率 |
八年級(jí) | 77.5 | ||
九年級(jí) | 76 | 82.5 | 50% |
(1)根據(jù)題目信息填空:________,________,________;
(2)八年級(jí)王宇和九年級(jí)程義的分?jǐn)?shù)都為80分,請(qǐng)判斷王宇、程義在各自年級(jí)的排名哪位更靠前?請(qǐng)簡(jiǎn)述你的理由;
(3)八年級(jí)被抽取的20名學(xué)生中,獲得等和等的學(xué)生將被隨機(jī)選出2名,協(xié)助學(xué)校普及新冠肺炎防控知識(shí),求這兩人都為等的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,是直徑,弦.
如圖1,求證:
如圖2,點(diǎn)在圓上,連接,若,求的值;
如圖3,在的條件下,分別延長(zhǎng)線段交于點(diǎn),過作于,連接,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上,向右,向下,向右的方向不斷地移動(dòng),每移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點(diǎn)A2020的坐標(biāo)為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com