(2013•武漢)科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié):科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表):
溫度x/℃ -4 -2 0 2 4 4.5
植物每天高度增長(zhǎng)量y/mm 41 49 49 41 25 19.75
由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量y是溫度x的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說(shuō)明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時(shí),這種植物每天高度增長(zhǎng)量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫(xiě)出結(jié)果.
分析:(1)選擇二次函數(shù),設(shè)y=ax2+bx+c(a≠0),然后選擇x=-2、0、2三組數(shù)據(jù),利用待定系數(shù)法求二次函數(shù)解析式即可,再根據(jù)反比例函數(shù)的自變量x不能為0,一次函數(shù)的特點(diǎn)排除另兩種函數(shù);
(2)把二次函數(shù)解析式整理成頂點(diǎn)式形式,再根據(jù)二次函數(shù)的最值問(wèn)題解答;
(3)求出平均每天的高度增長(zhǎng)量為25mm,然后根據(jù)y=25求出x的值,再根據(jù)二次函數(shù)的性質(zhì)寫(xiě)出x的取值范圍.
解答:解:(1)選擇二次函數(shù),設(shè)y=ax2+bx+c(a≠0),
∵x=-2時(shí),y=49,
x=0時(shí),y=49,
x=2時(shí),y=41,
4a-2b+c=49
c=49
4a+2b+c=41
,
解得
a=-1
b=-2
c=49
,
所以,y關(guān)于x的函數(shù)關(guān)系式為y=-x2-2x+49;
不選另外兩個(gè)函數(shù)的理由:
∵點(diǎn)(0,49)不可能在反比例函數(shù)圖象上,
∴y不是x的反比例函數(shù);
∵點(diǎn)(-4,41),(-2,49),(2,41)不在同一直線(xiàn)上,
∴y不是x的一次函數(shù);

(2)由(1)得,y=-x2-2x+49=-(x+1)2+50,
∵a=-1<0,
∴當(dāng)x=-1時(shí),y有最大值為50,
即當(dāng)溫度為-1℃時(shí),這種作物每天高度增長(zhǎng)量最大;

(3)∵10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,
∴平均每天該植物高度增長(zhǎng)量超過(guò)25mm,
當(dāng)y=25時(shí),-x2-2x+49=25,
整理得,x2+2x-24=0,
解得x1=-6,x2=4,
∴在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,實(shí)驗(yàn)室的溫度應(yīng)保持在-6<x<4℃.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問(wèn)題,以及利用二次函數(shù)求不等式,仔細(xì)分析圖表數(shù)據(jù)并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢模擬)如圖,兩個(gè)同心圓的圓心是O,AD是大圓的直徑,大圓的弦AB,BE分別與小圓相切于點(diǎn)C,F(xiàn),連接BD,則∠ABE+2∠D=
180°
180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢模擬)為了宣傳環(huán)保,小明寫(xiě)了一篇倡議書(shū),決定用微博轉(zhuǎn)發(fā)的方式傳播,他設(shè)計(jì)了如下的傳播規(guī)則:將倡議書(shū)發(fā)表在自己的微博上,再邀請(qǐng)n個(gè)好友轉(zhuǎn)發(fā)倡議書(shū),每個(gè)好友轉(zhuǎn)發(fā)倡議書(shū)之后,又邀請(qǐng)n個(gè)互不相同的好友轉(zhuǎn)發(fā)倡議書(shū),依此類(lèi)推,已知經(jīng)過(guò)兩輪傳播后,共有111人參與了傳播活動(dòng),則n=
10人
10人

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個(gè)動(dòng)點(diǎn),滿(mǎn)足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長(zhǎng)為2,則線(xiàn)段DH長(zhǎng)度的最小值是
5
-1
5
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案