精英家教網(wǎng)如圖:在Rt△ACB中,∠C=90°,AC=8,BC=6,CD是斜邊AB上的高.若點P在線段DB上,連接CP,sin∠APC=
2425
.求CP的長.
分析:根據(jù)面積相等和三角形的兩直角邊的長可以求得CD的長,然后利用正弦的定義求得CP的長即可.
解答:解:∵Rt△ACB中,∠C=90°,AC=8,BC=6,
∴AB=10,
∴S△ABC=
1
2
AB•CD=
1
2
AC•BC,
即:10CD=6×8,
解得CD=
24
5
,
∵sin∠APC=
CD
PC
=
24
5
CP
=
24
25

∴CP=5.
點評:本題考查了解直角三角形的知識,解題的關(guān)鍵是熟知正弦的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運(yùn)動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運(yùn)動,速度為2cm/s;連接PQ.若設(shè)運(yùn)動的時間為t(s)(0<t<2).根據(jù)以上信息,解答下列問題:
(1)當(dāng)t為何值時,以A、P、Q為頂點的三角形與△ABC相似?
(2)設(shè)四邊形PQCB的面積為y(cm2),直接寫出y與t之間的函數(shù)關(guān)系式;
(3)在點P、點Q的移動過程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個四邊形,那么是否存在某一時刻t,使組成的四邊形為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ACB中,∠C=90゜,點O為AB的中點,OE⊥OF交AC于E點、交BC于F點,EM⊥AB,F(xiàn)N⊥AB,垂足分別為M、N,
求證:AM=ON.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于點E,過E作ED⊥AB于D點,當(dāng)∠A=
30°
30°
 時,ED恰為AB的中垂線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于
40°
40°

查看答案和解析>>

同步練習(xí)冊答案