【題目】(1)如圖,在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括點(diǎn)O、B),作MN⊥DM,垂足為M,且MN=DM.設(shè)OM=a,請(qǐng)你利用基本活動(dòng)經(jīng)驗(yàn)直接寫(xiě)出點(diǎn)N的坐標(biāo)______(用含a的代數(shù)式表示);
(2)如果(1)的條件去掉“且MN=DM”,加上“交∠CBE的平分線與點(diǎn)N”,如圖,求證:MD=MN.如何突破這種定勢(shì),獲得問(wèn)題的解決,請(qǐng)你寫(xiě)出你的證明過(guò)程.
(3)在(2)的條件下,如圖,請(qǐng)你繼續(xù)探索:連接DN交BC于點(diǎn)F,連接FM,下列兩個(gè)結(jié)論:①FM的長(zhǎng)度不變;②MN平分∠FMB,請(qǐng)你指出正確的結(jié)論,并給出證明.
【答案】(1)(2+a,a);(2)證明見(jiàn)解析;(3)②MN平分∠FMB成立,證明見(jiàn)解析.
【解析】
(1)如圖1中,作NE⊥OB于E,只要證明△DMO≌△MNE即可解決問(wèn)題.
(2)如圖2中,在OD上取OH=OM,連接HM,只要證明△DHM≌△MBN即可.
(3)結(jié)論:MN平分∠FMB成立.如圖3中,在BO延長(zhǎng)線上取OA=CF,過(guò)M作MP⊥DN于P,因?yàn)椤?/span>NMB+∠CDF=45°,所以只要證明∠FMN+∠CDF=45°即可解決問(wèn)題.
(1)解:如圖1中,作NE⊥OB于E,
∵∠DMN=90°,
∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,
∴∠DMO=∠MNE,
在△DMO和△MNE中,
,
∴△DMO≌△MNE,
∴ME=DO=2,NE=OM=a,
∴OE=OM+ME=2+a,
∴點(diǎn)N坐標(biāo)(2+a,a),
故答案為N(2+a,a).
(2)證明:如圖2中,在OD上取OH=OM,連接HM,
∵OD=OB,OH=OM,
∴HD=MB,∠OHM=∠OMH=45°,
∴∠DHM=180°-45°=135°,
∵NB平分∠CBE,
∴∠NBE=45°,
∴∠NBM=180°-45°=135°,
∴∠DHM=∠NBM,
∵∠DMN=90°,
∴∠DMO+∠NMB=90°,
∵∠HDM+∠DMO=90°,
∴∠HDM=∠NMB,
在△DHM和△MBN中,
,
∴△DHM≌△MBN(ASA),
∴DM=MN.
(3)結(jié)論:MN平分∠FMB成立.
證明:如圖3中,在BO延長(zhǎng)線上取OA=CF,
在△AOD和△FCD中,
,
∴△DOA≌△DCF,
∴AD=DF,∠ADO=∠CDF,
∵∠MDN=45°,
∴∠CDF+∠ODM=45°,
∴∠ADO+∠ODM=45°,
∴∠ADM=∠FDM,
在△DMA和△DMF中,
,
∴△DMA≌△DMF,
∴∠DFM=∠DAM=∠DFC,
過(guò)M作MP⊥DN于P,則∠FMP=∠CDF,
由(2)可知∠NMF+∠FMP=∠PMN=45°,
∴∠NMB=∠MDO,∠MDO+∠CDF=45°,
∴∠NMB=∠NMF,即MN平分∠FMB.
故答案為:(1)(2+a,a);(2)證明見(jiàn)解析;(3)②MN平分∠FMB成立,證明見(jiàn)解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CE是圓O的直徑,點(diǎn)B在圓O上由點(diǎn)E順時(shí)針向點(diǎn)C運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)E、C重合),弦BD交CE于點(diǎn)F,且BD=BC,過(guò)點(diǎn)B作弦CD的平行線與CE的延長(zhǎng)線交于點(diǎn)A.
(1)若圓O的半徑為2,且點(diǎn)D為弧EC的中點(diǎn)時(shí),求圓心O到弦CD的距離;
(2)當(dāng)DFDB=CD2時(shí),求∠CBD的大;
(3)若AB=2AE,且CD=12,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各句判定矩形的說(shuō)法對(duì)角線相等的四邊形是矩形;對(duì)角線互相平分且相等的四邊形是矩形;有一個(gè)角是直角的四邊形是矩形;有四個(gè)角是直角的四邊形是矩形;四個(gè)角都相等的四邊形是矩形;對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;是正確有幾個(gè)
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰和小明分別從相距30公里的甲、乙兩地同時(shí)出發(fā)相向而行,小聰騎摩托車到達(dá)乙地后立即返回甲地,小明騎自行車從乙地直接到達(dá)甲地,函數(shù)圖象y1(km)和y2(km)分別表示小聰離甲地的距離和小明離乙地的距離與已用時(shí)間t(h)之間的關(guān)系,如圖所示.下列說(shuō)法:①折線段OAB是表示小聰?shù)暮瘮?shù)圖象y1,線段OC是表示小明的函數(shù)圖象y2;②小聰去乙地和返回甲地的平均速度相同;③兩人在出發(fā)80分鐘后第一次相遇;④小明騎自行車的平均速度為15km/h,其中不正確的個(gè)數(shù)為( 。
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的格點(diǎn)圖中,點(diǎn)A、B、C都是格點(diǎn).
(1)點(diǎn)A坐標(biāo)為______;點(diǎn)B坐標(biāo)為______;點(diǎn)C坐標(biāo)為______;
(2)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1;
(3)已知M(1,4),在x軸上找一點(diǎn)P,使|PM-PB|的值最大(寫(xiě)出過(guò)程,保留作圖痕跡),并寫(xiě)出點(diǎn)P的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:(1)如果 ,那么點(diǎn) 是線段 的中點(diǎn);(2)相等的兩個(gè)角是對(duì)頂角;(3)直角三角形的兩個(gè)銳角互余;(4)同位角相等;(5)兩點(diǎn)之間,直線最短.其中真命題的個(gè)數(shù)有( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一方有難八方支援,某市政府籌集抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型可供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)
(1)若全部物資都用甲、乙兩種車來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,則分別需甲、乙兩種車各幾輛?
(2)為了節(jié)約運(yùn)費(fèi),該市政府共調(diào)用16輛甲、乙,丙三種車都參與運(yùn)送物資,試求出有幾種運(yùn)送方案,哪種方案的運(yùn)費(fèi)最省?其費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,為銳角,點(diǎn)為射線上一點(diǎn),聯(lián)結(jié),以為一邊且在的右側(cè)作正方形.
(1)如果,,
①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;
②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,①中的結(jié)論是否仍然成立,并說(shuō)明理由;
(2)如果,是銳角,點(diǎn)在線段上,當(dāng)滿足什么條件時(shí),(點(diǎn)不重合),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com