(2006•貴港)如圖,AB∥CD,AB=CD,點B,E,F(xiàn),D在同一直線上,∠BAE=∠DCF.
(1)求證:AE=CF;
(2)連接AF、EC,試猜想四邊形AECF是什么四邊形,并證明你的結論.

【答案】分析:(1)要證AE=CF,需證△ABE≌△CDF.由AB∥CD,可知∠B=∠D,由AB=CD,可知∠BAE=∠DCF,即可證得.
(2)由△ABE≌△CDF得AE=CF,∠AEB=∠CFD,故180°-∠AEB=180°-∠CFD,即∠AEF=∠CFE,AE∥CF,AE=CF,故四邊形AECF是平行四邊形.
解答:(1)證明:∵AB∥CD,
∴∠B=∠D.
又∵AB=CD,∠BAE=∠DCF,
∴△ABE≌△CDF.
∴AE=CF.

(2)解:四邊形AECF是平行四邊形.
證明:由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD,
∴180°-∠AEB=180°-∠CFD,
即∠AEF=∠CFE.
∴AE∥CF.
∵AE=CF,
∴四邊形AECF是平行四邊形.
點評:本題考查的是全等三角形及平行四邊形的判定定理及性質,是中學階段的重點內容,需同學們熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•貴港)如圖,已知拋物線y=-x2+bx+c與x軸的兩個交點分別為A(x1,0),B(x2,0),且x1+x2=4,
(1)分別求出A,B兩點的坐標;
(2)求此拋物線的函數(shù)解析式;
(3)設此拋物線與y軸的交點為C,過作直線l與拋物線交于另一點D(點D在x軸上方),連接AC,CB,BD,DA,當四邊形ACBD的面積為4時,求點D的坐標和直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•貴港)如圖,已知直線l的函數(shù)表達式為y=-x+8,且l與x軸,y軸分別交于A,B兩點,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時動點P從A點開始在線段AO上以每秒1個單位長度的速度向點O移動,設點Q,P移動的時間為t秒
(1)點A的坐標為______,點B的坐標為______;
(2)當t=______時,△APQ與△AOB相似;
(3)(2)中當△APQ與△AOB相似時,線段PQ所在直線的函數(shù)表達式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西貴港市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•貴港)如圖,已知直線l的函數(shù)表達式為y=-x+8,且l與x軸,y軸分別交于A,B兩點,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時動點P從A點開始在線段AO上以每秒1個單位長度的速度向點O移動,設點Q,P移動的時間為t秒
(1)點A的坐標為______,點B的坐標為______;
(2)當t=______時,△APQ與△AOB相似;
(3)(2)中當△APQ與△AOB相似時,線段PQ所在直線的函數(shù)表達式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西貴港市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•貴港)如圖所示,圖(1)是一座拋物線型拱橋在建造過程中裝模時的設計示意圖,拱高為30m,支柱A3B3=50m,5根支柱A1B1,A2B2,A3B3,A4B4,A5B5之間的距離均為15m,B1B5∥A1A5,將拋物線放在圖(2)所示的直角坐標系中
(1)直接寫出圖(2)中點B1的坐標為______,B3的坐標為______,B5的坐標為______;
(2)求圖(2)中拋物線的函數(shù)表達式是______;
(3)求圖(1)中支柱A2B2的長度為______,A4B4的長度為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西貴港市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•貴港)如圖,已知拋物線y=-x2+bx+c與x軸的兩個交點分別為A(x1,0),B(x2,0),且x1+x2=4,
(1)分別求出A,B兩點的坐標;
(2)求此拋物線的函數(shù)解析式;
(3)設此拋物線與y軸的交點為C,過作直線l與拋物線交于另一點D(點D在x軸上方),連接AC,CB,BD,DA,當四邊形ACBD的面積為4時,求點D的坐標和直線l的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案