【題目】如圖,射線OA∥射線CB,∠C=∠OAB=100°.點D、E在線段CB上,且∠DOB=∠BOA,OE平分∠DOC.
(1)試說明AB∥OC的理由;
(2)試求∠BOE的度數(shù);
(3)平移線段AB;
①試問∠OBC:∠ODC的值是否會發(fā)生變化?若不會,請求出這個比值;若會,請找出相應(yīng)變化規(guī)律.
②若在平移過程中存在某種情況使得∠OEC=∠OBA,試求此時∠OEC的度數(shù).
【答案】(1)理由見解析(2)40°(3)①1:2②60°
【解析】試題分析:(1)根據(jù)OA//CB,得出,再根據(jù)已知條件,即可證明∠C+∠ABC=180°,從而得證.(2)根據(jù)兩直線平行,同旁內(nèi)角互補求出∠AOC,再求出∠EOB=∠AOC.(3)①根據(jù)兩直線平行,內(nèi)錯角相等可得∠AOB=∠OBC,再根據(jù)三角形的外角性質(zhì)∠OEC=2∠OBC即可.②根據(jù)三角形的內(nèi)角定理,求出∠COE=∠AOB,從而得到OB、OD、OE是∠AOC的四等分線,在利用三角形的內(nèi)角定理即可求出∠OEC的度數(shù).
試題解析:(1)∵OA∥CB,∴∠OAB+∠ABC=180°,∵∠C=∠OAB=100°,∴∠C+∠ABC=180°,
∴AB∥OC . (2)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COD,∴∠COE=∠EOD,∵∠DOB=∠AOB,∴∠EOB=∠EOD+∠DOB=∠AOC=×80°=40°;(3)①∵CB∥OA,∴∠AOB=∠OBC,∵∠EOB=∠AOB,∴∠EOB=∠OBC,∴∠OEC=∠EOB+∠OBC=2∠OBC,∴∠OBC:∠OEC=1:2,是定值;
②在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OD、OE是∠AOC的四等分線,
∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,∴∠OEC=∠OBA,此時∠OEC=∠OBA=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字49個.隨機抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<10 | 10 |
B | 10≤x<20 | 15 |
C | 20≤x<30 | 25 |
D | 30≤x<40 | m |
E | 40≤x<50 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù);
(3)已知該校共有2400名學(xué)生,如果聽寫正確的漢字的個數(shù)少于30個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)a×a3×(﹣a2)3
(2)()﹣1+()2×(﹣2)3﹣(π﹣3)0
(3)(﹣0.25)11×(﹣4)12
(4)(﹣2a2)2×a4﹣(﹣5a4)2.
(5)(x﹣y)6÷(y﹣x)3×(x﹣y)2
(6)314×(﹣)7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時乘以2得:
2S=2+22+23+24+25+…+22013+22014,將下式減去上式得:
2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1
請你仿照此法計算1+3+32+33+34…+32014的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2,則陰影部分圖形的面積為( )
A.4π B.2π C.π D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(﹣1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位,…依此規(guī)律跳動下去,P4的坐標(biāo)是 ,點P第8次跳動至P8的坐標(biāo)為 ;則點P第256次跳動至P256的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積S是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com