【題目】如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉(zhuǎn)到△BCF,旋轉(zhuǎn)角為α( 0°<α<180°),則∠α= .
【答案】90°
【解析】解:∵四邊形ABCD是正方形. ∴∠AOB=90°,
故α=90°.
故答案是:90°.
【考點精析】掌握正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+7與正比例函數(shù)y= x的圖象交于點A,且與x軸交于點B.
(1)求點A和點B的坐標;
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O﹣C﹣A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當(dāng)點P到達點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①當(dāng)t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1 m,小明爸爸與家之間的距離為s2 m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數(shù)關(guān)系的圖象.
(1)求s2與t之間的函數(shù)關(guān)系式;
(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個半圓依次相外切,它們的圓心都在x軸上,并與直線y= x相切.設(shè)三個半圓的半徑依次為r1、r2、r3 , 則當(dāng)r1=1時,r3= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從3名男生和2名女生中隨機抽取2014年南京青奧會志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點P(a,b)在函數(shù)y= 的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個“派生函數(shù)”.例如:點(2, )在函數(shù)y= 的圖象上,則函數(shù)y=2x2+x稱為函數(shù)y= 的一個“派生函數(shù)”.現(xiàn)給出以下兩個命題:(1)存在函數(shù)y= 的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè);(2)函數(shù)y= 的所有“派生函數(shù)”的圖象都經(jīng)過同一點.下列判斷正確的是( )
A.命題(1)與命題(2)都是真命題
B.命題(1)與命題(2)都是假命題
C.命題(1)是假命題,命題(2)是真命題
D.命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.
(1)寫出點D的坐標 .
(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.
試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;
(3)點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當(dāng)點R的坐標為時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;
(4)如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)、y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的扇形紙片半徑為5cm,用它圍成一個圓錐的側(cè)面,該圓錐的高是4cm,則該圓錐的底面周長是( )
A.3πcm
B.4πcm
C.5πcm
D.6πcm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com