二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)當x為何值時,y>0;y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.
(1)由圖形可得:x1=1,x2=3;
(2)結(jié)合圖形可得:1<x<3時y>0;x<1或x>3時y<0;
(3)根據(jù)圖形可得當x≥2時,y隨x的增大而減。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點A(x1,0)、B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線和直線BC的解析式;
(2)在給定的直角坐標系中,畫出拋物線和直線BC;
(3)若⊙P過A、B、C三點,求⊙P的半徑;
(4)拋物線上是否存在點M,過點M作MN⊥x軸于點N,使△MBN被直線BC分成面積比為1:3的兩部分?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在平面直角坐標系xOy中,拋物線y=ax2+2x經(jīng)過點A(4,0),頂點為B.
(1)求頂點B的坐標;
(2)將這條拋物線向左平移后與y軸相交于點C,此時點A移動到點D的位置,且∠DBA=∠CBO,求平移后拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某鎮(zhèn)的一種特產(chǎn)由于運輸原因,長期只能在當?shù)劁N售.當?shù)卣畬υ撎禺a(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤P=-
1
100
(x-60)2+41
(萬元).當?shù)卣當M在“十二•五”規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項目每年最多可投入100萬元的銷售投資,在實施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(萬元).
(1)若不進行開發(fā),求5年所獲利潤的最大值是多少?
(2)若按規(guī)劃實施,求5年所獲利潤(扣除修路后)的最大值是多少?
(3)根據(jù)(1)、(2),該方案是否具有實施價值?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應滿足( 。
A.a(chǎn)>0,b2-4ac>0B.a(chǎn)>0,b2-4ac<0
C.a(chǎn)<0,b2-4ac>0D.a(chǎn)<0,b2-4ac<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:拋物線y=-x2-2(m-1)x+m+1與x軸交于a(-1,0),b(3,0),則m為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)y=-x2+2x+c的部分圖象如圖所示,
(1)寫出拋物線與x軸的另外一個交點坐標并求c值;
(2)觀察圖象直接寫出不等式-x2+2x+c>0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知y=ax2+bx+c的圖象如圖,那么關(guān)于x的方程ax2+bx+c-3=0的根的情況(  )
A.有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根
C.無實數(shù)根D.以上答案均不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知直線y=x與二次函數(shù)y=ax2-2x-1的圖象的一個交點M的橫坐標為1,則a的值為(  )
A.2B.1C.3D.4

查看答案和解析>>

同步練習冊答案