【題目】為美化小區(qū),物業(yè)公司計劃對面積為的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊的倍,如果要獨立完成面積為區(qū)域的綠化,甲隊比乙隊少用天.

求甲、乙兩工程隊每天能完成綠化的面積分別是多少

若物業(yè)公司每天需付給甲隊的綠化費用為萬元,需付給乙隊的費用為萬元,要使這次的綠化總費用不超過萬元,至少應安排甲隊工作多少天?

【答案】,乙;

【解析】

1)設乙工程隊每天能完成綠化的面積為,則甲工程隊每天能完成綠化的面積為,根據(jù)在獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用1,即可得出關于x的分式方程,解之并檢驗后,即可得出結論;

2)設安排甲工程隊工作a天,則乙工程隊工作天,根據(jù)總費用=需付給甲隊總費用+需付給乙隊總費用,結合這次的綠化總費用不超過11萬元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,取其內(nèi)的最小正整數(shù)即可.

1)設乙工程隊每天能完成綠化的面積為,則甲工程隊每天能完成綠化的面積為

根據(jù)題意得:

解得:

經(jīng)檢驗,是原方程的解

答:甲工程隊每天能完成綠化的面積為,乙工程隊每天能完成綠化的面積為;

2)設安排甲工程隊工作a天,則乙工程隊工作

根據(jù)題意得:

解得:

答:至少應安排甲隊工作10天.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接體育中考,初三7班的體育老師對全班48名學生進行了一次體能模擬測試,得分均為整數(shù),滿分10分,成績達到6分以上(包括6分)為合格,成績達到9分以上(包括9分)為優(yōu)秀,這次模擬測試中男、女生全部成績分布的條形統(tǒng)計圖如下

1)請補充完成下面的成績統(tǒng)計分析表:

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

男生

6.9

2.4

______

91.7%

16.7%

女生

______

1.3

______

83.3%

8.3%

2)男生說他們的合格率、優(yōu)秀率均高于女生,所以他們的成績好于女生,但女生不同意男生的說法,認為女生的成績要好于男生,請給出兩條支持女生觀點的理由;

3)體育老師說,咱班的合格率基本達標,但優(yōu)秀率太低,我們必須加強體育鍛煉,兩周后的目標是:全班優(yōu)秀率達到50%.如果女生新增優(yōu)秀人數(shù)恰好是男生新增優(yōu)秀人數(shù)的兩倍,那么男、女生分別新增多少優(yōu)秀人數(shù)才能達到老師的目標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點A,Bx軸的負半軸上,反比例函數(shù)yk1≠0)在第二象限內(nèi)的圖象經(jīng)過正方形ABCD的頂點Dm,2)和BC邊上的點Gn,),直線y=k2x+bk2≠0)經(jīng)過點D,點G,則不等式≤k2x+b的解集為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

如圖1,均為等邊三角形,點,在同一條直線上,連接

探究發(fā)現(xiàn)

1)善思組發(fā)現(xiàn):,請你幫他們寫出推理過程;

2)鉆研組受善思組的啟發(fā),求出了度數(shù),請直接寫出等于______度;

3)奮進組在前面兩組的基礎上又探索出了的位置關系為______(請直接寫出結果);

拓展探究

4)如圖2均為等腰直角三角形,,點,,在同一條直線上,邊上的高,連接,試探究,之間有怎樣的數(shù)量關系.

創(chuàng)新組類比善思組的發(fā)現(xiàn),很快證出,進而得出.請你寫出,,之間的數(shù)量關系并幫創(chuàng)新組完成后續(xù)的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:把RtABC和RtDEF按如圖甲擺放(點C與點E重合),點B、C(E)、F在同一條直線上.BAC=DEF=90°,ABC=45°,BC=9cm,DE=6cm,EF=8cm.如圖乙,DEF從圖甲的位置出發(fā),以1cm/s的速度沿CB向ABC勻速移動,在DEF移動的同時,點P從DEF的頂點F出發(fā),以3cm/s的速度沿FD向點D勻速移動.當點P移動到點D時,P點停止移動,DEF也隨之停止移動.DE與AC相交于點Q,連接BQ、PQ,設移動時間為t(s).解答下列問題:

(1)設三角形BQE的面積為y(cm2),求y與t之間的函數(shù)關系式,并寫出自變量t的取值范圍;

(2)當t為何值時,三角形DPQ為等腰三角形?

(3)是否存在某一時刻t,使P、Q、B三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在菱形中,, 則菱形的邊長等于____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料并解答下列問題:如圖1,把平面內(nèi)一條數(shù)軸繞原點逆時針旋轉角得到另一條數(shù)軸軸和軸構成一個平面斜坐標系

規(guī)定:過點軸的平行線,交軸于點,過點軸的平行線,交軸于點,若點軸對應的實數(shù)為,點軸對應的實數(shù)為,則稱有序實數(shù)對為點在平面斜坐標系中的斜坐標.如圖2,在平面斜坐標系中,已知,點的斜坐標是,點的斜坐標是

1)連接,求線段的長;

2)將線段繞點順時針旋轉(點與點對應),求點的斜坐標;

3)若點是直線上一動點,在斜坐標系確定的平面內(nèi)以點為圓心,長為半徑作,當⊙軸相切時,求點的斜坐標,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示, 在平面直角坐標系中, 邊長為的正方形的邊軸上, 軸于點,一次函數(shù)的圖像經(jīng)過點,且與線段始終有交點(含端點),若,則的值可能為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014河南22題)

1)問題發(fā)現(xiàn)

如圖①,均為等邊三角形,點A、D、E在同一條直線上,連接BE;

填空:

的度數(shù)為__________;

②線段AD、BE之間的數(shù)量關系為__________

2)拓展探究

如圖②,均為等腰直角三角形,,點AD、E在同一條直線上,CMDE邊上的高,連接BE.請判斷的度數(shù)及線段CM、AE、BE之間的數(shù)量關系,并說明理由;

3)解決問題

如圖③,在正方形ABCD中,,若點P滿足,且,請直接寫出點ABP的距離.

圖① 圖② 圖③

查看答案和解析>>

同步練習冊答案