如圖(1),(2)所示,矩形ABCD的邊長(zhǎng)AB=6,BC=4,點(diǎn)F在DC
上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、線段BA向點(diǎn)A的方向運(yùn)動(dòng)(點(diǎn)M可運(yùn)動(dòng)到DA的延長(zhǎng)線上),當(dāng)動(dòng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、MN、FN,當(dāng)F、N、M不在同一直線時(shí),可得△FMN,過(guò)△FMN三邊的中點(diǎn)作△PQW.設(shè)動(dòng)點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為x秒.試解答下列問(wèn)題:
【小題1】DM=___▲____, AN=___▲____(用含x的代數(shù)式表示)
【小題2】說(shuō)明△FMN ∽ △QWP;
【小題3】試問(wèn)為何值時(shí),△PQW為直角三角形?
【小題4】問(wèn)當(dāng)為_(kāi)___▲_____時(shí),線段MN最短?
【小題1】 ( 2分)
【小題2】∵P、Q、W分別為△FMN三邊的中點(diǎn)
∴PQ∥FN,PW∥MN
∴∠MNF=∠PQM=∠QPW
同理:∠NFM=∠PQW
∴△FMN ∽ △QWP (2分)
【小題3】由⑴得△FMN ∽ △QWP,所以△FMN為直角三角形時(shí),△QWP也為直角三角形.如圖,過(guò)點(diǎn)N作NECD于E,根據(jù)題意,得DM=BM=,∴AM=4-,AN=DE=6-
∵DF=2,∴EF=4-
∴MF2=22+x2=x2+4,MN2=(4-x)2+(6-x)2=2x2-20x+52,
NF2=(4-x)2+42=x2-8x+32,
① 如果∠MNF=90°,
有2x2-20x+52+x2-8x+32=x2+4,
解得x1=4,x2=10(舍去);
②如果∠NMF=90°,
有2x2-20x+52+x2+4=x2-8x+32,
化簡(jiǎn),得:x2-6x+12=0,△=-12<0, 方程無(wú)實(shí)數(shù)根;
③如果∠MFN=90°,
有2x2-20x+52=x2+4+x2-8x+32,
解得x=.
∴當(dāng)為4或時(shí),△PQW為直角三角形 (3分)
【小題4】當(dāng)=5時(shí),線段MN最短.(2分)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com