精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2上的點D、C與x軸上的點A(-6,0)、B(4,0)構成平行四邊形ABCD,CD與y軸交于點E(0,6),求a的值及直線BC.
(1)由題意知:AB=4-(-6)=10,
∴CD=AB=10;
∵E(0,6),
∵由對稱性知:C(5,6),D(-5,6);
將C(5,6)代入y=ax2,得a=
6
25


(2)設直線BC的解析式為y=kx+b,
將B(4,0),C(5,6)代入解析式得:
4k+b=0
5k+b=6
,
解得:
k=6
b=-24
;
∴y=6x-24.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知,拋物線y=ax2-2ax與x軸交于A、B兩點(點A在點B的右側),且拋物線與直線y=-2ax-1的交點恰為拋物線的頂點C.
(1)求a的值;
(2)如果直線y=-x+b(
2
≤b≤
3
)與x軸交于點D,與線段BC交于點E,求△CDE面積的最大值;
(3)在(2)的結論下,在x軸下方,是否存在點F,使△BDF與△BCD相似?如果存在,請求出點F的坐標;不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①是拋物線形拱橋,當水面在n時,拱頂離水面2米,水面寬4米.
(1)求出拱橋的拋物線解析式;
(2)若水面下降2.5米,則水面寬度將增加多少米?(圖②是備用圖)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸的兩個交點分別為Α(1,0),B(3,0),
(1)求此拋物線的解析式;
(2)設此拋物線的頂點為D,與y軸的交點為C,試求四邊形ΑBCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

小王利用計算機設計了一個計算程序,輸入和輸出的數據如下表:
輸入12345
輸出25101726
若輸入的數據是x時,輸出的數據是y,y是x的二次函數,則y與x的函數表達式為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,2).
(1)畫出△OAB關于點O成中心對稱的△OA1B1,并寫出點B1的坐標;
(2)求出以點B1為頂點,并經過點B的二次函數關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設S=PQ2(cm2),試寫出S與t之間的函數關系式,并寫出t的取值范圍;
②當S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

蘋果熟了,從樹上落下所經過的路程s與下落的時間t滿足s=
1
2
gt2(g是不為0的常數),則s與t的函數圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,東梅中學要在教學樓后面的空地上用40米長的竹籬笆圍出一個矩形地塊作生物園,矩形的一邊用教學樓的外墻,其余三邊用竹籬笆.設矩形的寬為x,面積為y.
(1)求y與x的函數關系式,并求自變量x的取值范圍;
(2)生物園的面積能否達到210平方米?說明理由.

查看答案和解析>>

同步練習冊答案