【題目】如圖所示,天津電視塔頂部有一桅桿部分AB,數(shù)學(xué)興趣小組的同學(xué)在距地面高為4.2m的平臺(tái)D處觀測(cè)電視塔桅桿頂部A的仰角為67.3°,觀測(cè)桅桿底部B的仰角為58°.已知點(diǎn)A,B,C在同一條直線上,EC=172m.求測(cè)得的桅桿部分AB的高度和電視塔AC的高度.(結(jié)果保留小數(shù)點(diǎn)后一位).

參考數(shù)據(jù):tan67.3°2.39,tan60°1.73.

【答案】桅桿部分AB的高度為135.9m,電視塔AC的高度為415.3m.

【解析】分析:

如下圖,過(guò)點(diǎn)DDF⊥AC于點(diǎn)F,由已知易得四邊形DECF是矩形,由此可得DF=EC=172m,DE=CF=4.2m,然后在Rt△ADFRt△BDF中結(jié)合已知條件求得AFBF的長(zhǎng),即可由AB=AF-BFAC=AF+CF求得ABAC的長(zhǎng)了.

詳解:

如圖,作DF⊥AC于點(diǎn)F,

∵DF∥EC,DE∥CF,DE⊥EC,

∴四邊形DECF是平行四邊形,∠DEC=90°,

四邊形DECF是矩形,

∴DF=EC=172m,DE=CF=4.2m,

∵∠ADF=67.3°,∠BDF=58°,

Rt△ADF中,AF=DFtan67.3°≈411.1m,

Rt△BDF中,BF=DFtan58°≈275.2m,

∴AB=AF﹣BF=411.1﹣275.2=135.9m,

AC=AF+CF=411.1+4.2=415.3m.

答:桅桿部分AB的高度為135.9m,天塔AC的高度為415.3m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBA延長(zhǎng)線上的一點(diǎn),點(diǎn)EAC的中點(diǎn).

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法).

①作∠DAC的平分線AM;

②連接BE并延長(zhǎng)交AM于點(diǎn)F

③連接FC.

(2)猜想與證明:猜想四邊形ABCF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1a2a3,a4,……滿足下列條件:a1=0,a2=-a1+1│,a3=-a2+2│,a4=-a3+3│,·……,依次類(lèi)推,則a2017的值為

A.-1007B.-1008C.-1009D.-2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=2,A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cosEFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,點(diǎn)E是BC的中點(diǎn),EF⊥AB,垂足為F,且AB=DE.

(1)求證:△BCD是等腰直角三角形;

(2)若BD=8厘米,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為創(chuàng)建足球特色學(xué)校,營(yíng)造足球文化氛圍,某學(xué)校隨機(jī)抽取部分八年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按AB,CD四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8—10分,B級(jí):7—7.9分,C級(jí):6—6.9分,D級(jí):1—5.9分)根據(jù)所給信息,解答以下問(wèn)題:

(1)樣本容量為 ,C對(duì)應(yīng)的扇形的圓心角是____度,補(bǔ)全條形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在____等級(jí);

(3)該校八年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.點(diǎn)P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形?

(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形?

(3)分別求出(2)中菱形AQCP的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+ x+cx軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPEx軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;

(2)求證:點(diǎn)C在以AD為直徑的圓上;

(3)是否存在點(diǎn)P使得四邊形PCOF是平行四邊形,若存在求出P點(diǎn)的坐標(biāo),不存在請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,試求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案