【題目】若⊙O的半徑等于10cm,圓心O到直線l的距離是6cm,則直線l與⊙O位置關(guān)系是( )
A.相交
B.相切
C.相離
D.相切或相交
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探究函數(shù)y=x+的圖象與性質(zhì)】
(1)函數(shù)y=x+的自變量x的取值范圍是 ;
(2)下列四個(gè)函數(shù)圖象中函數(shù)y=x+的圖象大致是 ;
(3)對于函數(shù)y=x+,求當(dāng)x>0時(shí),y的取值范圍.
請將下列的求解過程補(bǔ)充完整.
解:∵x>0
∴y=x+=()2+()2=(﹣)2+
∵(﹣)2≥0
∴y≥ .
[拓展運(yùn)用]
(4)若函數(shù)y=,則y的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點(diǎn)O,下列結(jié)論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.面積相等的兩個(gè)圓是等圓
B.半徑相等的兩個(gè)半圓是等弧
C.直徑是圓中最長的弦
D.長度相等的兩條弧是等弧
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動(dòng)中心時(shí)的路線,以5千米/小時(shí)的平均速度快步返回.同時(shí),爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時(shí))后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動(dòng)中心與小宇家相距 千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為 小時(shí),他從活動(dòng)中心返家時(shí),步行用了 小時(shí);
(2)求線段BC所表示的y(千米)與x(小時(shí))之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結(jié)CE,如圖1所示.
(1)直接寫出∠ABD的大。ㄓ煤恋氖阶颖硎荆;
(2)判斷DC與CE的位置關(guān)系,并加以證明;
(3)在(2)的條件下,連結(jié)DE,如圖2,若∠DEC=45°,求α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,兩點(diǎn)的坐標(biāo)分別為,,是線段上一點(diǎn)(與,點(diǎn)不重合),拋物線()經(jīng)過點(diǎn),,頂點(diǎn)為,拋物線()經(jīng)過點(diǎn),,頂點(diǎn)為,,的延長線相交于點(diǎn).
(1)若,,求拋物線,的解析式;
(2)若,,求的值;
(3)是否存在這樣的實(shí)數(shù)(),無論取何值,直線與都不可能互相垂直?若存在,請直接寫出的兩個(gè)不同的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的中線,是線段上一點(diǎn)(不與點(diǎn)重合).交于點(diǎn),,連結(jié).
(1)如圖1,當(dāng)點(diǎn)與重合時(shí),求證:四邊形是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長交于點(diǎn),若,且.
①求的度數(shù);
②當(dāng),時(shí),求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com