直線y=kx+3與坐標(biāo)軸所圍圖形的面積為6,則k的值為


  1. A.
    2
  2. B.
    數(shù)學(xué)公式
  3. C.
    ±數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:本題可先設(shè)出直線與x、y軸的交點(diǎn),再根據(jù)三角形的面積公式列出方程,化簡即可得出k的值.
解答:直線y=kx+3與y軸的交點(diǎn)是(0,3)與x軸的交點(diǎn)是(-,0)
∵直線y=kx+3與坐標(biāo)軸所圍圖形的面積為6
×3×|-|=6,|-|=4
∴-=4或-=-4,解得k=-
故選C
點(diǎn)評:解決本題的關(guān)鍵是得到函數(shù)解析式與坐標(biāo)軸的交點(diǎn),以此確定所圍圖形的面積的邊長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+精英家教網(wǎng)b沿y軸向下平移3個單位后恰好經(jīng)過原點(diǎn),且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動,則在運(yùn)動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(32):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個單位后恰好經(jīng)過原點(diǎn),且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動,則在運(yùn)動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(33):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個單位后恰好經(jīng)過原點(diǎn),且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動,則在運(yùn)動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個單位后恰好經(jīng)過原點(diǎn),且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動,則在運(yùn)動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京市師達(dá)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個單位后恰好經(jīng)過原點(diǎn),且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動,則在運(yùn)動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

同步練習(xí)冊答案