【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)△ACN仍為等腰直角三角形,證明見解析.
【解析】
試題(1)由EN∥AD和點(diǎn)M為DE的中點(diǎn)可以證到△ADM≌△NEM,從而證到M為AN的中點(diǎn).
(2)易證AB=DA=NE,∠ABC=∠NEC=135°,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.
(3)同(2)中的解題可得AB=DA=NE,∠ABC=∠NEC=180°﹣∠CBN,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.
試題解析:解:(1)證明:如圖1,
∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.
∵點(diǎn)M為DE的中點(diǎn),∴DM=EM.
在△ADM和△NEM中,∵,∴△ADM≌△NEM(AAS).
∴AM=MN.∴M為AN的中點(diǎn).
(2)證明:如圖2,
∵△BAD和△BCE均為等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,∴∠DAE+∠NEA=180°.
∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.
∵A,B,E三點(diǎn)在同一直線上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),∴AD=NE.
∵AD=AB,∴AB=NE.
在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
(3)△ACN仍為等腰直角三角形.證明如下:
如圖3,此時A、B、N三點(diǎn)在同一條直線上.
∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.
∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.
∵A、B、N三點(diǎn)在同一條直線上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),∴AD=NE.
∵AD=AB,∴AB=NE.
在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正△ABC中,D,E分別在AC,AB上,且 ,AE=BE,則有( )
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級的一場籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時離地面高 m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時,若對方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的函數(shù)圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作Rt△ABC,且使∠ABC=30°.
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,),試用含m的代數(shù)式表示△APB的面積,并求當(dāng)△APB與△ABC面積相等時m的值;
(3)是否存在使△QAB是等腰三角形并且在坐標(biāo)軸上的點(diǎn)Q?若存在,請寫出點(diǎn)Q所有可能的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長AD到E,使DE=AB.
(1)求證:∠ABC=∠EDC;
(2)求證:△ABC≌△EDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板直角頂點(diǎn)重合于點(diǎn),,,.
(1)如圖(1),若,求證:;
(2)如圖(2),若,,則 度;
(3)如圖(3),在(1)的條件下,與相交于點(diǎn),連接,,若,,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC= .
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),F是BC延長線上的一點(diǎn),且EF∥DC.(1)求證:四邊形CDEF是平行四邊形;(2)若EF=2cm,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在四邊形ABCD中,點(diǎn)E、點(diǎn)F分別為AD、BC的中點(diǎn),連接EF.
(1)如圖1,AB∥CD,連接AF并延長交DC的延長線于點(diǎn)G,則AB、CD、EF之間的數(shù)量關(guān)系為 ;
(2)如圖2,∠B=90°,∠C=150°,求AB、CD、EF之間的數(shù)量關(guān)系?
(3)如圖3,∠ABC=∠BCD=45°,連接AC、BD交于點(diǎn)O,連接OE,若AB=,CD=2,BC=6,則OE= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com