如圖,拋物線(xiàn)交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線(xiàn)向右平移4個(gè)單位得拋物線(xiàn)y2,兩條拋物線(xiàn)相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線(xiàn)y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿(mǎn)足∠CPA=∠OBA,求出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線(xiàn)y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.
解:(1)拋物線(xiàn)向右平移4個(gè)單位的頂點(diǎn)坐標(biāo)為(4,-1),
∴拋物線(xiàn)y2的解析式為。
(2)當(dāng)x=0時(shí),y1=﹣1,y1=0時(shí),=0,解得x=1或x=-1,
∴點(diǎn)A(1,0),B(0,-1)!唷螼BA=450。
聯(lián)立,解得。
∴點(diǎn)C的坐標(biāo)為(2,3)。
∵∠CPA=∠OBA,
∴點(diǎn)P在點(diǎn)A的左邊時(shí),坐標(biāo)為(-1,0);在點(diǎn)A的右邊時(shí),坐標(biāo)為(5,0)。
∴點(diǎn)P的坐標(biāo)為(-1,0)或(5,0)。
(3)存在。
∵點(diǎn)C(2,3),∴直線(xiàn)OC的解析式為,
設(shè)與OC平行的直線(xiàn),
聯(lián)立,消掉y得,,
當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根時(shí),△QOC中OC邊上的高h(yuǎn)有最大值,
此時(shí),由一元二次方程根與系數(shù)的關(guān)系,得,
∴此時(shí),。
∴存在第四象限的點(diǎn)Q(,),使得△QOC中OC邊上的高h(yuǎn)有最大值,
此時(shí),解得。
∴過(guò)點(diǎn)Q與OC平行的直線(xiàn)解析式為。
令y=0,則,解得。
設(shè)直線(xiàn)與x軸的交點(diǎn)為E,則E(,0)。
過(guò)點(diǎn)C作CD⊥x軸于D,
根據(jù)勾股定理,,
則由面積公式,得,即。
∴存在第四象限的點(diǎn)Q(,),使得△QOC中OC邊上的高h(yuǎn)有最大值,最大值為。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,曲線(xiàn)是函數(shù)在第一象限內(nèi)的圖象,拋物線(xiàn)是函數(shù)的圖象.點(diǎn)()在曲線(xiàn)上,且都是整數(shù).
(1)求出所有的點(diǎn);
(2)在中任取兩點(diǎn)作直線(xiàn),求所有不同直線(xiàn)的條數(shù);
(3)從(2)的所有直線(xiàn)中任取一條直線(xiàn),求所取直線(xiàn)與拋物線(xiàn)有公共點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過(guò)點(diǎn)A、C、B的拋物線(xiàn)的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線(xiàn)的一部分C2組合成一條封閉曲線(xiàn),我們把這條封
閉曲線(xiàn)稱(chēng)為“蛋線(xiàn)”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線(xiàn)C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線(xiàn)”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(xiàn)y=ax2+bx+3與x軸交于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)A的直線(xiàn)l與拋物線(xiàn)交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).
(1)求拋物線(xiàn)的解析式;
(2)在(1)中拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)D,使△BCD的周長(zhǎng)最?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是(1)中拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且位于直線(xiàn)AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:關(guān)于x的二次函數(shù)(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請(qǐng)說(shuō)明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對(duì)于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A(yíng),B兩點(diǎn),與y軸交于C點(diǎn),拋物線(xiàn)經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線(xiàn)上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線(xiàn)頂點(diǎn)F,試判斷直線(xiàn)MF與⊙E的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知△OAB的頂點(diǎn)A(﹣6,0),B(0,2),O是坐標(biāo)原點(diǎn),將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.
(1)寫(xiě)出C,D兩點(diǎn)的坐標(biāo);
(2)求過(guò)A,D,C三點(diǎn)的拋物線(xiàn)的解析式,并求此拋物線(xiàn)頂點(diǎn)E的坐標(biāo);
(3)證明AB⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:
銷(xiāo)售單價(jià)(元) | x |
銷(xiāo)售量y(件) | |
銷(xiāo)售玩具獲得利潤(rùn)w(元) | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,)為圓心,以2為半徑的圓與x軸交于A(yíng),B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,試確定此二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com