【題目】在矩形ABCD中,BC=6,點(diǎn)E是AD邊上一點(diǎn),∠ABE=30°,BE=DE,連接BD.動(dòng)點(diǎn)M從點(diǎn)E出發(fā)沿射線ED運(yùn)動(dòng),過點(diǎn)M作MN∥BD交直線BE于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在線段ED上時(shí),求證:MN=EM;
(2)設(shè)MN長(zhǎng)為x,以M、N、D為頂點(diǎn)的三角形面積為y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)M運(yùn)動(dòng)到線段ED的中點(diǎn)時(shí),連接NC,過點(diǎn)M作MF⊥NC于F,MF交對(duì)角線BD于點(diǎn)G(如圖2),求線段MG的長(zhǎng).
【答案】(1)證明見解析(2)(3)
【解析】分析:(1)先根據(jù)等角對(duì)等邊證明EM=EN, 過點(diǎn)作 于點(diǎn),則.
在Rt△EMH中,根據(jù)銳角三角函數(shù)求出MH與EM的數(shù)量關(guān)系,進(jìn)而可證明結(jié)論;
(2)點(diǎn)M從點(diǎn)E出發(fā)沿射線ED運(yùn)動(dòng),所以分當(dāng)點(diǎn)M在線段ED上時(shí)與當(dāng)點(diǎn)M在線段ED的延長(zhǎng)線上時(shí)兩種情況討論,根據(jù)所作的輔助線,可得y與x的關(guān)系;
(3)連接CM交BD于點(diǎn),可得∠NMC=90°,進(jìn)而可得∽,可得,解之可得MG的長(zhǎng).
詳解:(1)證明:∵°, ° ,
∴ °
∵ ,
∴°
∵∥,
∴
∴°,
∴
過點(diǎn)作 于點(diǎn),則.
在中,
∴
∴
(2)在中,,
∴
∵ ∴
a.當(dāng)點(diǎn)在線段上時(shí),過點(diǎn)作于點(diǎn),
在中,
由(1)可知:
,
∴
∴
∴
b.當(dāng)點(diǎn)在線段延長(zhǎng)線上時(shí),過點(diǎn)作于點(diǎn)
在中, ,
在中,,
∴,
∴ ;
(3)連接,交于點(diǎn).
∵為的中點(diǎn) ,
∴,
∴.
∵ ,
∴,
∴,
∴,
∴.
∵∥ ,
∴,
∴ ,
,
∵ ,
∴,
又∵ ,
∴∽,
∴,即,
∴ .
點(diǎn)睛:本題結(jié)合矩形的性質(zhì),平行線的判定與性質(zhì),等腰三角形的判定與性質(zhì),二次函數(shù)的綜合應(yīng)用,解直角三角形,相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是熟練掌握各種圖形的判定與性質(zhì),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與化簡(jiǎn)
(1)計(jì)算:(6m2+4m﹣3)+2(2m2﹣4m+1);
(2)先化簡(jiǎn),再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | … | |
y | … | 3 | m | … |
求m的值;
(3)如下圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司員工分別住在A、B、C三個(gè)住宅區(qū),A區(qū)有25人,B區(qū)有15人,C區(qū)有10人,三個(gè)區(qū)在一條直線上,位置如圖所示,公司的接送車打算在此間只設(shè)一個(gè)?奎c(diǎn),為使所有員工步行到停靠點(diǎn)的路程總和最少,那么?奎c(diǎn)的位置應(yīng)設(shè)在( 。
A. A區(qū) B. B區(qū) C. A區(qū)或B區(qū) D. C區(qū)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當(dāng)a=5時(shí),方程組的解是;
②當(dāng)x,y的值互為相反數(shù)時(shí),a=20;
③不存在一個(gè)實(shí)數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用太陽光測(cè)量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線上).已知小明的身高EF是1.7m,請(qǐng)你幫小明求出樓高AB(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說理證明.
(簡(jiǎn)單應(yīng)用)
(2)如圖2,分別平分,若,,求的度數(shù)(可直接使用問題(1)中的結(jié)論).
(問題探究)
(3)如圖3,直線平分的外角,平分的外角,若,,猜想的度數(shù)為 .
(拓展延伸)
(4)在圖4中,若設(shè),,,試問與、之間的數(shù)量關(guān)系為: (用表示)
(5)在圖5中,平分,平分的外角,猜想與、的關(guān)系,直接寫出結(jié)論 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)a1,a2,a3,a4,a5的平均數(shù)是m,且a1>a2>a3>a4>a5>0,則數(shù)據(jù)a1,a2,a3,﹣3,a4,a5的平均數(shù)和中位數(shù)分別是_____,_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com