已知△ABC中,∠C=90°,∠A=30°,BD平分∠B交AC于點(diǎn)D,則點(diǎn)D( )
A.是AC的中點(diǎn)
B.在AB的垂直平分線上
C.在AB的中點(diǎn)
D.不能確定
【答案】分析:由已知條件可得∠ABD=30°=∠B,得出線段相等,根據(jù)線段垂直平分線定理的逆定理可知答案B是正確的.
解答:解:∵∠C=90°,∠A=30°,
∴∠B=60°.
∵BD平分∠B交AC于點(diǎn)D,
∴∠ABD=30°=∠A,
∴DA=DB.
∴D在AB的垂直平分線上.
故選B.
點(diǎn)評(píng):此題主要考查了垂直平分線的性質(zhì)和等腰三角形的性質(zhì).由角相等得出線段相等是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動(dòng)點(diǎn),且點(diǎn)P不與點(diǎn)A、B重合,點(diǎn)Q不與點(diǎn)B、C重合.
(1)在以下五個(gè)結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點(diǎn)的三角形全等于△PQB;④以A、P、C為頂點(diǎn)的三角形全等于△CPQ;⑤以A、P、C為頂點(diǎn)的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號(hào)填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長(zhǎng)取不同的值時(shí),△CPQ是否可能為直角三角形?若可能,請(qǐng)說(shuō)明所有的精英家教網(wǎng)情況;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過(guò)D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長(zhǎng)為一元二次方程x2-9x+20=0的一個(gè)根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案