如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.

(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.

解:(1)證明:連接OC,

∵OA=OC,∴∠BAC=∠OCA。
∵∠DAC=∠BAC,∴∠OCA=∠DAC。∴OC∥AD。
∵AD⊥EF,∴OC⊥EF。
∵OC為半徑,∴EF是⊙O的切線。
(2)證明:∵AB為⊙O直徑,AD⊥EF,
∴∠BCA=∠ADC=90°。
∵∠DAC=∠BAC,∴△ACB∽△ADC。
。∴AC2=AD•AB。
(3)∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°.
∵OC=OA,∴△OAC是等邊三角形。∴AC=OA=OC=2,∠AOC=60°。
∵在Rt△ACD中,AD=AC=1。
由勾股定理得:DC=,
∴陰影部分的面積是S=S梯形OCDA﹣S扇形OCA=×(2+1)×。

解析試題分析:(1)連接OC,根據(jù)OA=OC推出∠BAC=∠OCA=∠DAC,推出OC∥AD,得出OC⊥EF,根據(jù)切線的判定推出即可。
(2)證△ADC∽△ACB,得出比例式,即可推出答案。
(3)求出等邊三角形OAC,求出AC、∠AOC,在Rt△ACD中,求出AD、CD,求出梯形OCDA和扇形OCA的面積,相減即可得出答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在⊙O中,直徑AB⊥CD于點(diǎn)E,連接BC.

(1)線段BC、BE、AB應(yīng)滿足的數(shù)量關(guān)系是      ;
(2)若點(diǎn)P是優(yōu)弧上一點(diǎn)(不與點(diǎn)C、A、D重合),連接BP與CD交于點(diǎn)G.
請(qǐng)完成下面四個(gè)任務(wù):
①根據(jù)已知畫出完整圖形,并標(biāo)出相應(yīng)字母;
②在正確完成①的基礎(chǔ)上,猜想線段BC、BG、BP應(yīng)滿足的數(shù)量關(guān)系是       
③證明你在②中的猜想是正確的;
④點(diǎn)P′恰恰是你選擇的點(diǎn)P關(guān)于直徑AB的對(duì)稱點(diǎn),那么按照要求畫出圖形后在②中的猜想仍然正確嗎?    ;(填正確或者不正確,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,矩形ABCD中,AB=21,AD=12,E是CD邊上的一點(diǎn),CE=5,M是BC邊上的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB邊以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連結(jié)PM.設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間是t秒.

(1)求線段AE的長(zhǎng);
(2)當(dāng)△ADE與△PBM相似時(shí),求t的值;
(3)如圖2,連接EP,過(guò)點(diǎn)P作PH⊥AE于H.①當(dāng)EP平分四邊形PMEH的面積時(shí),求t的值;②以PE為對(duì)稱軸作線段BC的軸對(duì)稱圖形B′C′,當(dāng)線段B′C′與線段AE有公共點(diǎn)時(shí),寫出t的取值范圍(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

【提出問(wèn)題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.

【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.

【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,矩形ABCD中,以對(duì)角線BD為一邊構(gòu)造一個(gè)矩形BDEF,使得另一邊EF過(guò)原矩形的頂點(diǎn)C.

(1)設(shè)Rt△CBD的面積為S1, Rt△BFC的面積為S2, Rt△DCE的面積為S3 , 則S1       S2+ S3(用“>”、“=”、“<”填空);
(2)寫出圖中的三對(duì)相似三角形,并選擇其中一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在矩形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn),連接BP,線段BP的垂直平分線交邊BC于點(diǎn)Q,垂足為點(diǎn)M,連接QP(如圖).已知AD=13,AB=5,設(shè)AP=x,BQ=y.

(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)以AP長(zhǎng)為半徑的⊙P和以QC長(zhǎng)為半徑的⊙Q外切時(shí),求x的值;
(3)點(diǎn)E在邊CD上,過(guò)點(diǎn)E作直線QP的垂線,垂足為F,如果EF=EC=4,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(a,0),(其中a>0),直線l過(guò)動(dòng)點(diǎn)M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點(diǎn)D、E,P點(diǎn)在y軸上(P點(diǎn)異于C點(diǎn))滿足PE=CE,直線PD與x軸交于點(diǎn)Q,連接PA.

(1)寫出A、C兩點(diǎn)的坐標(biāo);
(2)當(dāng)0<m<1時(shí),若△PAQ是以P為頂點(diǎn)的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點(diǎn)的倍邊三角形),求出m的值;
(3)當(dāng)1<m<2時(shí),是否存在實(shí)數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013年四川綿陽(yáng)14分)我們知道,三角形的三條中線一定會(huì)交于一點(diǎn),這一點(diǎn)就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問(wèn)題.請(qǐng)你利用重心的概念完成如下問(wèn)題:

(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長(zhǎng)交BC于D,證明:
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點(diǎn),且滿足,試判斷O是△ABC的重心嗎?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(3)若O是△ABC的重心,過(guò)O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點(diǎn)重合)(如圖3),S四邊形BCHG,SAGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖的罐頭的俯視圖大致是( )
 

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案