【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如圖1,折疊△ABC使點(diǎn)A落在AC邊上的點(diǎn)D處,折痕交AC、AB分別于Q、H,若S△ABC=9S△DHQ,則HQ= .
(2)如圖2,折疊△ABC使點(diǎn)A落在BC邊上的點(diǎn)M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;
(3)在(1)(2)的條件下,線段CQ上是否存在點(diǎn)P,使得△CMP和△HQP相似?若存在,求出PQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)5;(2)證明見(jiàn)解析;(3)QP的值為或10或.
【解析】
(1)利用勾股定理求出AC,設(shè)HQ=x,根據(jù)S△ABC=9S△DHQ,構(gòu)建方程即可解決問(wèn)題;
(2)想辦法證明四邊相等即可解決問(wèn)題;
(3)設(shè)AE=EM=FM=AF=4m,則BM=3m,F(xiàn)B=5m,構(gòu)建方程求出m的值,分兩種情形分別求解即可解決問(wèn)題.
解:(1)如圖1中,
在△ABC中,∵∠ACB=90°,AB=25,BC=15,
∴AC==20,設(shè)HQ=x,
∵HQ∥BC,
∴,
∴AQ=x,
∵S△ABC=9S△DHQ,
∴×20×15=9××x×x,
∴x=5或﹣5(舍棄),
∴HQ=5,
故答案為5.
(2)如圖2中,
由翻折不變性可知:AE=EM,AF=FM,∠AFE=∠MFE,
∵FM∥AC,
∴∠AEF=∠MFE,
∴∠AEF=∠AFE,
∴AE=AF,
∴AE=AF=MF=ME,
∴四邊形AEMF是菱形.
(3)如圖3中,
設(shè)AE=EM=FM=AF=4m,則BM=3m,FB=5m,
∴4m+5m=25,
∴m=,
∴AE=EM=,
∴EC=20﹣=,
∴CM=,
∵QG=5,AQ=,
∴QC=,設(shè)PQ=x,
當(dāng)時(shí),△HQP∽△MCP,
∴,
解得:x=,
當(dāng)=時(shí),△HQP∽△PCM,
∴
解得:x=10或,
經(jīng)檢驗(yàn):x=10或是分式方程的解,且符合題意,
綜上所,滿足條件長(zhǎng)QP的值為或10或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PQ,過(guò)點(diǎn)A作AQ⊥PQ于點(diǎn)Q,連接AP.
(1)填空:拋物線的解析式為 ,點(diǎn)C的坐標(biāo) ;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若△AQP∽△AOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,⊙O的圓心O在坐標(biāo)原點(diǎn),半徑OB在x軸正半軸上,點(diǎn)P是⊙O外一點(diǎn),連接PO,與⊙O交于點(diǎn)A,PC、PD是⊙O的切線,切點(diǎn)分別為點(diǎn)C、點(diǎn)D,AO=OB=2,∠POB=120°,點(diǎn)M 坐標(biāo)為(1,-).
(1)求證:OP⊥CD;
(2)連結(jié)OM,求∠AOM的大;
(3) 如果點(diǎn)E在x軸上,且△ABE與△AOM相似,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的銷售單價(jià)為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)面包.設(shè)這種面包的銷售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷售這種面包的利潤(rùn)為y角.
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求x與y之間的函數(shù)關(guān)系式:
(3)當(dāng)這種面包的銷售單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把三邊長(zhǎng)的比為3:4:5的三角形稱為完全三角形,記命題A:“完全三角形是直角三角形”.若命題B是命題A的逆命題,請(qǐng)寫出命題B:______________________;并寫出一個(gè)例子(該例子能判斷命題B是錯(cuò)誤的)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上,拋物線m經(jīng)過(guò)點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l上.
(1)若B(-2,1),
①請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過(guò)點(diǎn)Q作x軸的垂線,與直線l交于點(diǎn)H.若QH=d,當(dāng)d隨e的增大面增大時(shí),求e的取值范圍;
(2)拋物線m與y軸交于點(diǎn)F,當(dāng)拋物線m與x軸有唯一交點(diǎn)時(shí),判斷△NOF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.
(1)請(qǐng)補(bǔ)畫出它的俯視圖,并標(biāo)出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標(biāo)的尺寸(單位:厘米),計(jì)算這個(gè)幾何體的全面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥周谷堆農(nóng)副產(chǎn)品批發(fā)市場(chǎng)某商鋪購(gòu)進(jìn)一批紅薯,通過(guò)商店批發(fā)和在淘寶網(wǎng)上進(jìn)行銷售.首月進(jìn)行了銷售情況的統(tǒng)計(jì),其中商店日批發(fā)量(百斤)與時(shí)間(為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示;在淘寶網(wǎng)上的日銷售量(百斤)與時(shí)間(為整數(shù),單位:天)的部分對(duì)應(yīng)值如圖所示.
時(shí)間(天) | 0 | 5 | 10 | 150 | 20 | 25 | 30 |
日批發(fā)量(百斤) | 025 | 40 | 45 | 40 | 25 | 0 |
(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映與的變化規(guī)律,求出與之間的函數(shù)關(guān)系式;
(2)求與之間的函數(shù)關(guān)系式;
(3)設(shè)這個(gè)月中,日銷售總量為,求出與之間的函數(shù)關(guān)系式,并求出當(dāng)為何值時(shí),日銷售總量最大,最大值為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com