如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.

(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
(1)由全等三角形的判定定理AAS證得結(jié)論。
(2)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠2;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF。

分析:(1)由全等三角形的判定定理AAS證得結(jié)論。
(2)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠2;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF。
解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC。

又∵點F在CB的延長線上,∴AD∥CF!唷1=∠2。
∵點E是AB邊的中點,∴AE=BE,
∵在△ADE與△BFE中,,
∴△ADE≌△BFE(AAS)。
(2)CE⊥DF。理由如下:
如圖,連接CE,
由(1)知,△ADE≌△BFE,
∴DE=FE,即點E是DF的中點,∠1=∠2。
∵DF平分∠ADC,∴∠1=∠3!唷3=∠2。
∴CD=CF!郈E⊥DF。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=CB,∠ABC=900,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.

①求證:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°,∠CAB=60°,按以下步驟作圖:

①分別以A,B為圓心,以大于AB的長為半徑做弧,兩弧相交于點P和Q.
②作直線PQ交AB于點D,交BC于點E,連接AE.若CE=4,則AE=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠A=50°∠ABC=60°.
(1)若BD為∠ABC平分線,求∠BDC.
(2)若CE為∠ACB平分線且交BD于E,求∠BEC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了維護海洋權(quán)益,新組建的國家海洋局加強了海洋巡邏力度.如圖,一艘海監(jiān)船位于燈塔P的南偏東45°方向,距離燈塔100海里的A處,沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處.

(1)在這段時間內(nèi),海監(jiān)船與燈塔P的最近距離是多少?(結(jié)果用根號表示)
(2)在這段時間內(nèi),海監(jiān)船航行了多少海里?(參數(shù)數(shù)據(jù):,結(jié)果精確到0.1海里)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分線與BA的延長線相交于點E.

(1)請你判斷BF與CD的位置關(guān)系,并說明理由;
(2)求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框ABCD,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則現(xiàn)在A、C相對的螺絲的距離的最大值,以及現(xiàn)在B、D相對的螺絲的距離的最大值分別為

A. 5和7         B. 10和7         C. 5和8        D. 10和8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一個正多邊形中,一個外角的度數(shù)等于一個內(nèi)角度數(shù)的,求這個正多邊形的邊數(shù)和它一個內(nèi)角的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=900,AC=,BC=3,△DEF是邊長為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長為T。

(1)求證:點E到AC的距離為一常數(shù);
(2)若AD=,當a=2時,求T的值;
(3)若點D運動到AC的中點處,請用含a的代數(shù)式表示T。

查看答案和解析>>

同步練習冊答案