如圖,在△ABC 中,AB=AC,AD是BC邊上的高,∠BAC=50°,則∠BAD=
25°
25°
分析:根據(jù)已知的AB=AC得到三角形ABC為等腰三角形,再根據(jù)AD是BC邊上的高,利用等腰三角形“三線合一”的性質(zhì)得到AD平分∠BAC,進(jìn)而根據(jù)已知的∠BAC=50°,利用角平分線的定義即可求出∠BAD的度數(shù).
解答:解:∵AB=AC,
∴△ABC是等腰三角形,
又AD是BC邊上的高,
∴AD平分∠BAC,
∴∠BAD=
1
2
∠BAC=
1
2
×50°=25°.
故答案為:25°
點(diǎn)評:此題考查了等腰三角形的判定與性質(zhì),以及角平分線的定義,根據(jù)已知的AD為等腰三角形底邊上的高,利用等腰三角形“三線合一”的性質(zhì)得到AD也為頂角的角平分線是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案