【題目】在一個不透明的口袋里裝有若干個除顏色外其余均相同的紅、黃、藍三種顏色的小球,其中紅球2個,籃球1個,若從中任意摸出一個球,摸到球是紅球的概率為

1)求袋中黃球的個數(shù);

2)第一次任意摸出一個球(不放回),第二次再摸出一個球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

【答案】1)袋中黃球的個數(shù)1個;

2)兩次摸到球的顏色是紅色與黃色這種組合的概率為.

【解析】

1)首先設袋中的黃球個數(shù)為x個,然后根據(jù)古典概率的知識列方程,求解即可求得答案;

2)首先畫樹狀圖,然后求得全部情況的總數(shù)與符合條件的情況數(shù)目,求其二者的比值即可.

1)設袋中的黃球個數(shù)為x個,

,

解得:x=1

經(jīng)檢驗,x=1是原方程的解,

∴袋中黃球的個數(shù)1個;

2)畫樹狀圖得:

,

∴一共有12種情況,兩次摸到球的顏色是紅色與黃色這種組合的有4種,

∴兩次摸到球的顏色是紅色與黃色這種組合的概率為:=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)直線l1yx+1x軸交于點A,直線l2y=﹣x+3x軸交于點Bl1l2交于點C,直線l3過線段AB的中點和點C,求直線l3的解析式;

2)已知平面直角坐標系中,直線l經(jīng)過點P2,1)且與雙曲線y交于AB不同兩點,問是否存在這樣的直線l,使得點P恰好為線段AB的中點,若存在,求出直線l的解析式,若不存在,請說明理由;

3)若Ax1,y1)、Bx2,y2)是拋物線y4x2上的不同兩點(y1≠y2),線段AB的垂直平分線與y軸交于點P,與線段AB交于點Mxm,ym),則稱線段AB為點P的一條相關弦,若點P的坐標為(0a)時(a為常數(shù)),證明點P相關弦中點M的縱坐標相同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線yax24amx+3am2a、m為參數(shù),且a0,m0)與x軸交于A、B兩點(AB的左邊),與y軸交于點C

1)求點B的坐標(結果可以含參數(shù)m);

2)連接CA、CB,若C0,3m),求tanACB的值;

3)如圖②,在(2)的條件下,拋物線的對稱軸為直線lx2,點P是拋物線上的一個動點,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P,使△POF成為以點P為直角頂點的的等腰直角三角形.若存在,求出所有符合條件的點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,小明在大樓的東側A處發(fā)現(xiàn)正前方仰角為75°的方向上有一熱氣球在C處,此時,小亮在大樓的西側B處也測得氣球在其正前方仰角為30°的位置上,已知AB的距離為60米,試求此時小明、小亮兩人與氣球的距離ACBC.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,將四邊形折疊,使點A落在BC邊上的點E處,折痕為BF.

1)求證:四邊形ABEF為菱形;

2)連接ACEF于點P, CD=2CE,SPCE=2,求PAF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點Py軸的垂線,垂足為點E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如果點P的坐標為(xy),PAE的面積為S,求Sx之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過點P(﹣3,m)作x軸的垂線,垂足為點F,連接EF,把PEF沿直線EF折疊,點P的對應點為點P,求出P的坐標.(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2bxc(a≠0)的頂點和該拋物線與y軸的交點在一次函數(shù)ykx1(k≠0)的圖象上,它的對稱軸是x1.有下列四個結論,①. abc0 . a<-;③. a=-k;④. 0x1時,axbk,其中正確結論的個數(shù)是( )

A.1;B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖坐標系中,O0,0),A6,6),B12,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE,則ACAD的值是(  )

A.12B.23C.67D.78

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點AB(點A位于點B的左側),與y軸交于點C,CDx軸交拋物線于點D,M為拋物線的頂點.

1)求點AB、C的坐標;

2)設動點N(-2,n),求使MNBN的值最小時n的值;

3P是拋物線上一點,請你探究:是否存在點P,使以PA、B為頂點的三角形與△ABD相似,(△PAB與△ABD不重合)?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案