【題目】在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分線,下列結(jié)論:
①△ABD,△BCD都是等腰三角形;
②AD=BD=BC;
③BC2=CDCA;
④D是AC的黃金分割點
其中正確的是( )
A.1個 B.2個 C.3個 D.4個
【答案】D
【解析】
試題分析:在△ABC,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,可推出△BCD,△ABD為等腰三角形,可得AD=BD=BC,利用三角形相似解題.
解:如圖,∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC交AC于點D,
∴∠ABD=∠CBD=∠ABC=36°=∠A,
∴AD=BD,
∠BDC=∠ABD+∠A=72°=∠C,
∴BC=BD,
∴△ABD,△BCD都是等腰三角形,故①正確;
∴BC=BD=AD,故②正確;
∵∠A=∠CBD,∠C=∠C,
∴△BCD∽△ACB,
∴,
即BC2=CDAC,故③正確;
∵AD=BD=BC,
∴AD2=ACCD=(AD+CD)CD,
∴AD=CD,
∴D是AC的黃金分割點.故④正確,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘核潛艇在海面DF下600米A點處測得俯角為30°正前方的海底C點處有黑匣子,繼續(xù)在同一深度直線航行2000米到B點處測得正前方C點處的俯角為45°.求海底C點處距離海面DF的深度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知代數(shù)式4x-12+8y的值是8,則代數(shù)式x+2y的值是
A. 5 B. 20 C. -1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個長方體的寬為b(定值),長為x,高為h,體積為V,則V=bxh,其中變量是( )
A. x B. h
C. V D. x,h,V
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將點A(1,3)向左平移2個單位,再向下平移4個單位得到點B,則點B的坐標(biāo)為( )
A. (-2,-1) B. (-1,0)
C. (-1,-1) D. (-2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碼頭工人每天往一艘輪船50噸貨物,裝載完畢恰好用了8天時間.
(1)輪船到達目的地后開始卸貨,平均卸貨速度v(單位:噸/天)與卸貨時間t(單位:天)之間有怎樣的函數(shù)關(guān)系?
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求出以此兩根為邊長的直角三角形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com