精英家教網 > 初中數學 > 題目詳情
24、如圖所示,在△ABC中,D、E分別是AC、AB上的點,BD與CE交于點O,給出下列四個結論:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.
請在上述四個結論中選擇兩個作為條件,說明△ABC是等腰三角形.
分析:(1)要證△ABC是等腰三角形,就要證∠ABC=∠ACB,根據已知條件即可找到證明∠ABC=∠ACB的組合;
(2)可利用△EOB與△DOC全等,得出OC=OB,再得出∠OCB與∠OBC相等,就能證明∠ABC與∠ACB相等.
解答:解:(1)①③
∵∠EBO=∠DCO,BE=CD,∠EOB=∠DOC,
∴△EOB≌△DOC,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形;

(2)①④
∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形;

(3)②③
∵∠BEO=∠CDO,BE=CD,∠EOB=∠DOC,
∴△EOB≌△DOC,
∴OB=OC,∠EBO=∠DCO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形;

(4)②④
∵∠BEO=∠CDO,OB=OC,∠EOB=∠DOC,
∴△EOB≌△DOC,
∴∠EBO=∠DCO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
故答案為①③或①④或②③或②④.
點評:此題主要考查利用等角對等邊來判定等腰三角形;題目對學生的要求比較高,利用等量加等量和相等是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案